ترغب بنشر مسار تعليمي؟ اضغط هنا

Insights from the quantitative calibration of an elasto-plastic model from a Lennard-Jones atomic glass

77   0   0.0 ( 0 )
 نشر من قبل Sylvain Patinet Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compare the macroscopic and the local plastic behavior of a model amorphous solid based on two radically different numerical descriptions. On the one hand, we simulate glass samples by atomistic simulations. On the other, we implement a mesoscale elasto-plastic model based on a solid-mechanics description. The latter is extended to consider the anisotropy of the yield surface via statistically distributed local and discrete weak planes on which shear transformations can be activated. To make the comparison as quantitative as possible, we consider the simple case of a quasistatically driven two-dimensional system in the stationary flow state and compare mechanical observables measured on both models over the same length scales. We show that the macroscale response, including its fluctuations, can be quantitatively recovered for a range of elasto-plastic mesoscale parameters. Using a newly developed method that makes it possible to probe the local yield stresses in atomistic simulations, we calibrate the local mechanical response of the elasto-plastic model at different coarse-graining scales. In this case, the calibration shows a qualitative agreement only for an optimized subset of mesoscale parameters and for sufficiently coarse probing length scales. This calibration allows us to establish a length scale for the mesoscopic elements that corresponds to an upper bound of the shear transformation size, a key physical parameter in elasto-plastic models. We find that certain properties naturally emerge from the elasto-plastic model. In particular, we show that the elasto-plastic model reproduces the Bauschinger effect, namely the plasticity-induced anisotropy in the stress-strain response. We discuss the successes and failures of our approach, the impact of different model ingredients and propose future research directions for quantitative multi-scale models of amorphous plasticity.

قيم البحث

اقرأ أيضاً

We calculate the density of states of a binary Lennard-Jones glass using a recently proposed Monte Carlo algorithm. Unlike traditional molecular simulation approaches, the algorithm samples distinct configurations according to self-consistent estimat es of the density of states, thereby giving rise to uniform internal-energy histograms. The method is applied to simulate the equilibrium, low-temperature thermodynamic properties of a widely studied glass former consisting of a binary mixture of Lennard-Jones particles. We show how a density-of-states algorithm can be combined with particle identity swaps and configurational bias techniques to study that system. Results are presented for the energy and entropy below the mode coupling temperature.
74 - L. Banetta , A. Zaccone 2019
Determining the microstructure of colloidal suspensions under shear flows has been a challenge for theoretical and computational methods due to the singularly-perturbed boundary-layer nature of the problem. Previous approaches have been limited to th e case of hard-sphere systems and suffer from various limitations in their applicability. We present a new analytic scheme based on intermediate asymptotics which solves the Smoluchowski diffusion-convection equation including both intermolecular and hydrodynamic interactions. The method is able to recover previous results for the hard-sphere fluid and, for the first time, to predict the radial distribution function (rdf) of attractive fluids such as the Lennard-Jones (LJ) fluid. In particular, a new depletion effect is predicted in the rdf of the LJ fluid under shear. This method can be used for the theoretical modelling and understanding of real fluids subjected to flow, with applications ranging from chemical systems to colloids, rheology, plasmas, and atmospherical science.
62 - Shibu Saw , Jeppe C. Dyre 2020
Combining the recent Piskulich-Thompson approach [Z. A. Piskulich and W. H. Thompson, {it J. Chem. Phys.} {bf 152}, 011102 (2020)] with isomorph theory, from a single simulation, the structure of a single-component Lennard-Jones (LJ) system is obtain ed at an arbitrary state point in almost the whole liquid region of the temperature-density phase diagram. The LJ system exhibits two temperature range where the vant Hoffs assumption that energetic and entropic forces are temperature independent is valid. A method to evaluate the structure at an arbitrary state point along an isochore from the knowledge of structures at two temperatures on the isochore is also discussed. We argue that, in general, the structure of any hidden scale-invariant system obeying the vant Hoffs assumption in the whole range of temperatures can be determined in the whole liquid region of the phase diagram from only a single simulation.
92 - Shang Ren , Yang Sun , Feng Zhang 2020
A first principle prediction of the binary nanoparticle phase diagram assembled by solvent evaporation has eluded theoretical approaches. In this paper, we show that a binary system interacting through Lennard-Jones (LJ) potential contains all experi mental phases in which nanoparticles are effectively described as quasi hard spheres. We report a phase diagram consisting of 53 equilibrium phases, whose stability is quite insensitive to the microscopic details of the potentials, thus giving rise to some type of universality. Furthermore, we show that binary lattices may be understood as consisting of certain particle clusters, i.e. motifs, which provide a generalization of the four conventional Frank-Kasper polyhedral units. Our results show that meta-stable phases share the very same motifs as equilibrium phases. We discuss the connection with packing models, phase diagrams with repulsive potentials and the prediction of likely experimental superlattices.
Liquids displaying strong virial-potential energy correlations conform to an approximate density scaling of their structural and dynamical observables. This scaling property does not extend to the entire phase diagram, in general. The validity of the scaling can be quantified by a correlation coefficient. In this work a simple scheme to predict the correlation coefficient and the density-scaling exponent is presented. Although this scheme is exact only in the dilute gas regime or in high dimension d, a comparison with results from molecular dynamics simulations in d = 1 to 4 shows that it reproduces well the behavior of generalized Lennard-Jones systems in a large portion of the fluid phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا