ﻻ يوجد ملخص باللغة العربية
A first principle prediction of the binary nanoparticle phase diagram assembled by solvent evaporation has eluded theoretical approaches. In this paper, we show that a binary system interacting through Lennard-Jones (LJ) potential contains all experimental phases in which nanoparticles are effectively described as quasi hard spheres. We report a phase diagram consisting of 53 equilibrium phases, whose stability is quite insensitive to the microscopic details of the potentials, thus giving rise to some type of universality. Furthermore, we show that binary lattices may be understood as consisting of certain particle clusters, i.e. motifs, which provide a generalization of the four conventional Frank-Kasper polyhedral units. Our results show that meta-stable phases share the very same motifs as equilibrium phases. We discuss the connection with packing models, phase diagrams with repulsive potentials and the prediction of likely experimental superlattices.
The binary Kob-Andersen (KA) Lennard-Jones mixture is the standard model for computational studies of viscous liquids and the glass transition. For very long simulations the viscous KA system crystallizes, however, by phase separating into a pure A p
This paper studies physical aging by computer simulations of a 2:1 Kob-Andersen binary Lennard-Jones mixture, a system that is less prone to crystallization than the standard 4:1 composition. Starting from thermal-equilibrium states, the time evoluti
We calculate the density of states of a binary Lennard-Jones glass using a recently proposed Monte Carlo algorithm. Unlike traditional molecular simulation approaches, the algorithm samples distinct configurations according to self-consistent estimat
Combining the recent Piskulich-Thompson approach [Z. A. Piskulich and W. H. Thompson, {it J. Chem. Phys.} {bf 152}, 011102 (2020)] with isomorph theory, from a single simulation, the structure of a single-component Lennard-Jones (LJ) system is obtain
Longitudinal and transverse sound velocities of Lennard-Jones systems are calculated at the liquid-solid coexistence using the additivity principle. The results are shown to agree well with the ``exact values obtained from their relations to excess e