ﻻ يوجد ملخص باللغة العربية
Liquids displaying strong virial-potential energy correlations conform to an approximate density scaling of their structural and dynamical observables. This scaling property does not extend to the entire phase diagram, in general. The validity of the scaling can be quantified by a correlation coefficient. In this work a simple scheme to predict the correlation coefficient and the density-scaling exponent is presented. Although this scheme is exact only in the dilute gas regime or in high dimension d, a comparison with results from molecular dynamics simulations in d = 1 to 4 shows that it reproduces well the behavior of generalized Lennard-Jones systems in a large portion of the fluid phase.
We calculate the density of states of a binary Lennard-Jones glass using a recently proposed Monte Carlo algorithm. Unlike traditional molecular simulation approaches, the algorithm samples distinct configurations according to self-consistent estimat
Determining the microstructure of colloidal suspensions under shear flows has been a challenge for theoretical and computational methods due to the singularly-perturbed boundary-layer nature of the problem. Previous approaches have been limited to th
In recent years lines along which structure and dynamics are invariant to a good approximation, so-called isomorphs, have been identified in the thermodynamic phase diagrams of several model liquids and solids. This paper reports computer simulations
Longitudinal and transverse sound velocities of Lennard-Jones systems are calculated at the liquid-solid coexistence using the additivity principle. The results are shown to agree well with the ``exact values obtained from their relations to excess e
This paper investigates the relation between the density-scaling exponent $gamma$ and the virial potential-energy correlation coefficient $R$ at several thermodynamic state points in three dimensions for the generalized $(2n,n)$ Lennard-Jones (LJ) sy