ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust learning under clean-label attack

92   0   0.0 ( 0 )
 نشر من قبل Han Shao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the problem of robust learning under clean-label data-poisoning attacks, where the attacker injects (an arbitrary set of) correctly-labeled examples to the training set to fool the algorithm into making mistakes on specific test instances at test time. The learning goal is to minimize the attackable rate (the probability mass of attackable test instances), which is more difficult than optimal PAC learning. As we show, any robust algorithm with diminishing attackable rate can achieve the optimal dependence on $epsilon$ in its PAC sample complexity, i.e., $O(1/epsilon)$. On the other hand, the attackable rate might be large even for some optimal PAC learners, e.g., SVM for linear classifiers. Furthermore, we show that the class of linear hypotheses is not robustly learnable when the data distribution has zero margin and is robustly learnable in the case of positive margin but requires sample complexity exponential in the dimension. For a general hypothesis class with bounded VC dimension, if the attacker is limited to add at most $t>0$ poison examples, the optimal robust learning sample complexity grows almost linearly with $t$.

قيم البحث

اقرأ أيضاً

Long-tailed learning has attracted much attention recently, with the goal of improving generalisation for tail classes. Most existing works use supervised learning without considering the prevailing noise in the training dataset. To move long-tailed learning towards more realistic scenarios, this work investigates the label noise problem under long-tailed label distribution. We first observe the negative impact of noisy labels on the performance of existing methods, revealing the intrinsic challenges of this problem. As the most commonly used approach to cope with noisy labels in previous literature, we then find that the small-loss trick fails under long-tailed label distribution. The reason is that deep neural networks cannot distinguish correctly-labeled and mislabeled examples on tail classes. To overcome this limitation, we establish a new prototypical noise detection method by designing a distance-based metric that is resistant to label noise. Based on the above findings, we propose a robust framework,~algo, that realizes noise detection for long-tailed learning, followed by soft pseudo-labeling via both label smoothing and diverse label guessing. Moreover, our framework can naturally leverage semi-supervised learning algorithms to further improve the generalisation. Extensive experiments on benchmark and real-world datasets demonstrate the superiority of our methods over existing baselines. In particular, our method outperforms DivideMix by 3% in test accuracy. Source code will be released soon.
A recent source of concern for the security of neural networks is the emergence of clean-label dataset poisoning attacks, wherein correctly labeled poison samples are injected into the training dataset. While these poison samples look legitimate to t he human observer, they contain malicious characteristics that trigger a targeted misclassification during inference. We propose a scalable and transferable clean-label poisoning attack against transfer learning, which creates poison images with their center close to the target image in the feature space. Our attack, Bullseye Polytope, improves the attack success rate of the current state-of-the-art by 26.75% in end-to-end transfer learning, while increasing attack speed by a factor of 12. We further extend Bullseye Polytope to a more practical attack model by including multiple images of the same object (e.g., from different angles) when crafting the poison samples. We demonstrate that this extension improves attack transferability by over 16% to unseen images (of the same object) without using extra poison samples.
Despite of the pervasive existence of multi-label evasion attack, it is an open yet essential problem to characterize the origin of the adversarial vulnerability of a multi-label learning system and assess its attackability. In this study, we focus o n non-targeted evasion attack against multi-label classifiers. The goal of the threat is to cause miss-classification with respect to as many labels as possible, with the same input perturbation. Our work gains in-depth understanding about the multi-label adversarial attack by first characterizing the transferability of the attack based on the functional properties of the multi-label classifier. We unveil how the transferability level of the attack determines the attackability of the classifier via establishing an information-theoretic analysis of the adversarial risk. Furthermore, we propose a transferability-centered attackability assessment, named Soft Attackability Estimator (SAE), to evaluate the intrinsic vulnerability level of the targeted multi-label classifier. This estimator is then integrated as a transferability-tuning regularization term into the multi-label learning paradigm to achieve adversarially robust classification. The experimental study on real-world data echos the theoretical analysis and verify the validity of the transferability-regularized multi-label learning method.
372 - Bhanu Garg , Naresh Manwani 2019
The real-world data is often susceptible to label noise, which might constrict the effectiveness of the existing state of the art algorithms for ordinal regression. Existing works on ordinal regression do not take label noise into account. We propose a theoretically grounded approach for class conditional label noise in ordinal regression problems. We present a deep learning implementation of two commonly used loss functions for ordinal regression that is both - 1) robust to label noise, and 2) rank consistent for a good ranking rule. We verify these properties of the algorithm empirically and show robustness to label noise on real data and rank consistency. To the best of our knowledge, this is the first approach for robust ordinal regression models.
The multi-armed bandit formalism has been extensively studied under various attack models, in which an adversary can modify the reward revealed to the player. Previous studies focused on scenarios where the attack value either is bounded at each roun d or has a vanishing probability of occurrence. These models do not capture powerful adversaries that can catastrophically perturb the revealed reward. This paper investigates the attack model where an adversary attacks with a certain probability at each round, and its attack value can be arbitrary and unbounded if it attacks. Furthermore, the attack value does not necessarily follow a statistical distribution. We propose a novel sample median-based and exploration-aided UCB algorithm (called med-E-UCB) and a median-based $epsilon$-greedy algorithm (called med-$epsilon$-greedy). Both of these algorithms are provably robust to the aforementioned attack model. More specifically we show that both algorithms achieve $mathcal{O}(log T)$ pseudo-regret (i.e., the optimal regret without attacks). We also provide a high probability guarantee of $mathcal{O}(log T)$ regret with respect to random rewards and random occurrence of attacks. These bounds are achieved under arbitrary and unbounded reward perturbation as long as the attack probability does not exceed a certain constant threshold. We provide multiple synthetic simulations of the proposed algorithms to verify these claims and showcase the inability of existing techniques to achieve sublinear regret. We also provide experimental results of the algorithm operating in a cognitive radio setting using multiple software-defined radios.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا