ﻻ يوجد ملخص باللغة العربية
Consider a cost-sharing game with players of different contribution to the total cost: an example might be an insurance company calculating premiums for a population of mixed-risk individuals. Two natural and competing notions of fairness might be to a) charge each individual the same price or b) charge each individual according to the cost that they bring to the pool. In the insurance literature, these general approaches are referred to as solidarity and actuarial fairness and are commonly viewed as opposites. However, in insurance (and many other natural settings), the cost-sharing game also exhibits externalities of size: all else being equal, larger groups have lower average cost. In the insurance case, we analyze a model with externalities of size due to a reduction in the variability of losses. We explore how this complicates traditional understandings of fairness, drawing on literature in cooperative game theory. First, we explore solidarity: we show that it is possible for both groups (high and low risk) to strictly benefit by joining an insurance pool where costs are evenly split, as opposed to being in separate risk pools. We build on this by producing a pricing scheme that maximally subsidizes the high risk group, while maintaining an incentive for lower risk people to stay in the insurance pool. Next, we demonstrate that with this new model, the price charged to each individual has to depend on the risk of other participants, making naive actuarial fairness inefficient. Furthermore, we prove that stable pricing schemes must be ones where players have the anti-social incentive of desiring riskier partners, contradicting motivations for using actuarial fairness. Finally, we describe how these results relate to debates about fairness in machine learning and potential avenues for future research.
Sponsored Search Auctions (SSAs) arguably represent the problem at the intersection of computer science and economics with the deepest applications in real life. Within the realm of SSAs, the study of the effects that showing one ad has on the other
This paper is the confluence of two streams of ideas in the literature on generating numerical invariants, namely: (1) template-based methods, and (2) recurrence-based methods. A template-based method begins with a template that contains unknown quan
ML-based predictive systems are increasingly used to support decisions with a critical impact on individuals lives such as college admission, job hiring, child custody, criminal risk assessment, etc. As a result, fairness emerged as an important requ
We study the optimal pricing strategies of a monopolist selling a divisible good (service) to consumers that are embedded in a social network. A key feature of our model is that consumers experience a (positive) local network effect. In particular, e
In modern applications, statisticians are faced with integrating heterogeneous data modalities relevant for an inference, prediction, or decision problem. In such circumstances, it is convenient to use a graphical model to represent the statistical d