ﻻ يوجد ملخص باللغة العربية
This paper is the confluence of two streams of ideas in the literature on generating numerical invariants, namely: (1) template-based methods, and (2) recurrence-based methods. A template-based method begins with a template that contains unknown quantities, and finds invariants that match the template by extracting and solving constraints on the unknowns. A disadvantage of template-based methods is that they require fixing the set of terms that may appear in an invariant in advance. This disadvantage is particularly prominent for non-linear invariant generation, because the user must supply maximum degrees on polynomials, bases for exponents, etc. On the other hand, recurrence-based methods are able to find sophisticated non-linear mathematical relations, including polynomials, exponentials, and logarithms, because such relations arise as the solutions to recurrences. However, a disadvantage of past recurrence-based invariant-generation methods is that they are primarily loop-based analyses: they use recurrences to relate the pre-state and post-state of a loop, so it is not obvious how to apply them to a recursive procedure, especially if the procedure is non-linearly recursive (e.g., a tree-traversal algorithm). In this paper, we combine these two approaches and obtain a technique that uses templates in which the unknowns are functions rather than numbers, and the constraints on the unknowns are recurrences. The technique synthesizes invariants involving polynomials, exponentials, and logarithms, even in the presence of arbitrary control-flow, including any combination of loops, branches, and (possibly non-linear) recursion. For instance, it is able to show that (i) the time taken by merge-sort is $O(n log(n))$, and (ii) the time taken by Strassens algorithm is $O(n^{log_2(7)})$.
In modern applications, statisticians are faced with integrating heterogeneous data modalities relevant for an inference, prediction, or decision problem. In such circumstances, it is convenient to use a graphical model to represent the statistical d
Consider a cost-sharing game with players of different contribution to the total cost: an example might be an insurance company calculating premiums for a population of mixed-risk individuals. Two natural and competing notions of fairness might be to
MOOC participants often feel isolated and disconnected from their peers. Navigating meaningful peer interactions, generating a sense of belonging, and achieving social presence are all major challenges for MOOC platforms. MOOC users often rely on ext
In program synthesis there is a well-known trade-off between concise and strong specifications: if a specification is too verbose, it might be harder to write than the program; if it is too weak, the synthesised program might not match the users inte
We analyze the statistical properties of Poincare recurrences of Homo sapiens, mammalian and other DNA sequences taken from Ensembl Genome data base with up to fifteen billions base pairs. We show that the probability of Poincare recurrences decays i