ﻻ يوجد ملخص باللغة العربية
Surface-response functions are one of the most promising routes for bridging the gap between fully quantum-mechanical calculations and phenomenological models in quantum nanoplasmonics. Within all the currently available recipes for obtaining such response functions, emph{ab initio} calculations remain one of the most predominant, wherein the surface-response function are retrieved via the metals non-equilibrium response to an external perturbation. Here, we present a complementary approach where one of the most appealing surface-response functions, namely the Feibelman $d$-parameters, yield a finite contribution even in the case where they are calculated directly from the equilibrium properties described under the local-response approximation (LRA), but with a spatially varying equilibrium electron density. Using model calculations that mimic both spill-in and spill-out of the equilibrium electron density, we show that the obtained $d$-parameters are in qualitative agreement with more elaborate, but also more computationally demanding, emph{ab initio} methods. The analytical work presented here illustrates how microscopic surface-response functions can emerge out of entirely local electrodynamic considerations.
We present a theoretical analysis of the standing wave patterns in STM images, which occur around surface point defects. We consider arbitrary dispersion relations for the surface states and calculate the conductance for a system containing a small-s
We analyze existing optical data in the superconducting state of LiFeAs at $T =$ 4 K, to recover its electron-boson spectral density. A maximum entropy technique is employed to extract the spectral density $I^2chi(omega)$ from the optical scattering
We experimentally characterize the spatial far-field emission profiles for the two lowest confined modes of a photonic crystal cavity of the L3 type, finding a good agreement with FDTD simulations. We then link the far-field profiles to relevant feat
The study of charge-density wave (CDW) distortions in Weyl semimetals has recently returned to the forefront, inspired by experimental interest in materials such as (TaSe4)2I. However, the interplay between collective phonon excitations and charge tr
We analytically evaluate charge and spin density response functions of the clean two-dimensional electron gas with Rashba spin-orbit coupling at finite momenta and frequencies. On the basis of our exact expressions we discuss the accuracy of the long