ﻻ يوجد ملخص باللغة العربية
The study of charge-density wave (CDW) distortions in Weyl semimetals has recently returned to the forefront, inspired by experimental interest in materials such as (TaSe4)2I. However, the interplay between collective phonon excitations and charge transport in Weyl-CDW systems has not been systematically studied. In this paper, we examine the longitudinal electromagnetic response due to collective modes in a Weyl semimetal gapped by a quasi one-dimensional charge-density wave order, using both continuum and lattice regularized models. We systematically compute the contributions of the collective modes to the linear and nonlinear optical conductivity of our models, both with and without tilting of the Weyl cones. We discover that, unlike in a single-band CDW, the gapless CDW collective mode does not contribute to the conductivity unless the Weyl cones are tilted. Going further, we show that the lowest nontrivial collective mode contribution to charge transport with untilted Weyl cones comes in the third-order conductivity, and is mediated by the gapped amplitude mode. We show that this leads to a sharply peaked third harmonic response at frequencies below the single-particle energy gap. We discuss the implications of our findings for transport experiments in Weyl-CDW systems.
Weyl semimetals are characterized by unconventional electromagnetic response. We present analytical expressions for all components of the frequency- and wave-vector-dependent charge-spin linear-response tensor of Weyl fermions. The spin-momentum lock
Charge-density waves (CDWs) in Weyl semimetals (WSMs) have been shown to induce an exotic axionic insulating phase in which the sliding mode (phason) of the CDW acts as a dynamical axion field, giving rise to a large positive magneto-conductance. In
New developments in the field of topological matter are often driven by materials discovery, including novel topological insulators, Dirac semimetals and Weyl semimetals. In the last few years, large efforts have been performed to classify all known
In recent theoretical and experimental investigations, researchers have linked the low-energy field theory of a Weyl semimetal gapped with a charge-density wave (CDW) to high-energy theories with axion electrodynamics. However, it remains an open que
Smooth interfaces of topological systems are known to host massive surface states along with the topologically protected chiral one. We show that in Weyl semimetals these massive states, along with the chiral Fermi arc, strongly alter the form of the