ﻻ يوجد ملخص باللغة العربية
We present a theoretical analysis of the standing wave patterns in STM images, which occur around surface point defects. We consider arbitrary dispersion relations for the surface states and calculate the conductance for a system containing a small-size tunnel contact and a surface impurity. We find rigorous theoretical relations between the interference patterns in the real-space STM images, their Fourier transforms and the Fermi contours of two-dimensional electrons. We propose a new method for reconstructing Fermi contours of surface electron states, directly from the real-space STM images around isolated surface defects.
Surface-response functions are one of the most promising routes for bridging the gap between fully quantum-mechanical calculations and phenomenological models in quantum nanoplasmonics. Within all the currently available recipes for obtaining such re
We present an improved way for imaging the local density of states with a scanning tunneling microscope, which consists in mapping the surface topography while keeping the differential conductance (d$I$/d$V$) constant. When archetypical C$_{60}$ mole
It is well known that on the surface of Weyl semimetals, Fermi arcs appear as the topologically protected surface states. In this work, we give a semiclassical explanation for the morphology of the surface Fermi arcs. Viewing the surface states as a
The nonlinear optical responses from topological semimetals are crucial in both understanding the fundamental properties of quantum materials and designing next-generation light-sensors or solar-cells. However, previous work was focusing on the optic
The polar interface between LaAlO$_{3}$ and SrTiO$_{3}$ has shown promise as a field effect transistor, with reduced (nanoscale) feature sizes and potentially added functionality over conventional semiconductor systems. However, the mobility of the i