ترغب بنشر مسار تعليمي؟ اضغط هنا

Weakly-supervised multi-class object localization using only object counts as labels

134   0   0.0 ( 0 )
 نشر من قبل Kyle Mills
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate the use of an extensive deep neural network to localize instances of objects in images. The EDNN is naturally able to accurately perform multi-class counting using only ground truth count values as labels. Without providing any conceptual information, object annotations, or pixel segmentation information, the neural network is able to formulate its own conceptual representation of the items in the image. Using images labelled with only the counts of the objects present,the structure of the extensive deep neural network can be exploited to perform localization of the objects within the visual field. We demonstrate that a trained EDNN can be used to count objects in images much larger than those on which it was trained. In order to demonstrate our technique, we introduce seven new data sets: five progressively harder MNIST digit-counting data sets, and two datasets of 3d-rendered rubber ducks in various situations. On most of these datasets, the EDNN achieves greater than 99% test set accuracy in counting objects.

قيم البحث

اقرأ أيضاً

Although recent advances in deep learning accelerated an improvement in a weakly supervised object localization (WSOL) task, there are still challenges to identify the entire body of an object, rather than only discriminative parts. In this paper, we propose a novel residual fine-grained attention (RFGA) module that autonomously excites the less activated regions of an object by utilizing information distributed over channels and locations within feature maps in combination with a residual operation. To be specific, we devise a series of mechanisms of triple-view attention representation, attention expansion, and feature calibration. Unlike other attention-based WSOL methods that learn a coarse attention map, having the same values across elements in feature maps, our proposed RFGA learns fine-grained values in an attention map by assigning different attention values for each of the elements. We validated the superiority of our proposed RFGA module by comparing it with the recent methods in the literature over three datasets. Further, we analyzed the effect of each mechanism in our RFGA and visualized attention maps to get insights.
We propose to help weakly supervised object localization for classes where location annotations are not available, by transferring things and stuff knowledge from a source set with available annotations. The source and target classes might share simi lar appearance (e.g. bear fur is similar to cat fur) or appear against similar background (e.g. horse and sheep appear against grass). To exploit this, we acquire three types of knowledge from the source set: a segmentation model trained on both thing and stuff classes; similarity relations between target and source classes; and co-occurrence relations between thing and stuff classes in the source. The segmentation model is used to generate thing and stuff segmentation maps on a target image, while the class similarity and co-occurrence knowledge help refining them. We then incorporate these maps as new cues into a multiple instance learning framework (MIL), propagating the transferred knowledge from the pixel level to the object proposal level. In extensive experiments, we conduct our transfer from the PASCAL Context dataset (source) to the ILSVRC, COCO and PASCAL VOC 2007 datasets (targets). We evaluate our transfer across widely different thing classes, including some that are not similar in appearance, but appear against similar background. The results demonstrate significant improvement over standard MIL, and we outperform the state-of-the-art in the transfer setting.
523 - Pei Lv , Haiyu Yu , Junxiao Xue 2019
Localizing objects with weak supervision in an image is a key problem of the research in computer vision community. Many existing Weakly-Supervised Object Localization (WSOL) approaches tackle this problem by estimating the most discriminative region s with feature maps (activation maps) obtained by Deep Convolutional Neural Network, that is, only the objects or parts of them with the most discriminative response will be located. However, the activation maps often display different local maximum responses or relatively weak response when one image contains multiple objects with the same type or small objects. In this paper, we propose a simple yet effective multi-scale discriminative region discovery method to localize not only more integral objects but also as many as possible with only image-level class labels. The gradient weights flowing into different convolutional layers of CNN are taken as the input of our method, which is different from previous methods only considering that of the final convolutional layer. To mine more discriminative regions for the task of object localization, the multiple local maximum from the gradient weight maps are leveraged to generate the localization map with a parallel sliding window. Furthermore, multi-scale localization maps from different convolutional layers are fused to produce the final result. We evaluate the proposed method with the foundation of VGGnet on the ILSVRC 2016, CUB-200-2011 and PASCAL VOC 2012 datasets. On ILSVRC 2016, the proposed method yields the Top-1 localization error of 48.65%, which outperforms previous results by 2.75%. On PASCAL VOC 2012, our approach achieve the highest localization accuracy of 0.43. Even for CUB-200-2011 dataset, our method still achieves competitive results.
Weakly-supervised object localization (WSOL) has gained popularity over the last years for its promise to train localization models with only image-level labels. Since the seminal WSOL work of class activation mapping (CAM), the field has focused on how to expand the attention regions to cover objects more broadly and localize them better. However, these strategies rely on full localization supervision to validate hyperparameters and for model selection, which is in principle prohibited under the WSOL setup. In this paper, we argue that WSOL task is ill-posed with only image-level labels, and propose a new evaluation protocol where full supervision is limited to only a small held-out set not overlapping with the test set. We observe that, under our protocol, the five most recent WSOL methods have not made a major improvement over the CAM baseline. Moreover, we report that existing WSOL methods have not reached the few-shot learning baseline, where the full-supervision at validation time is used for model training instead. Based on our findings, we discuss some future directions for WSOL.
Weakly-supervised object localization (WSOL) enables finding an object using a dataset without any localization information. By simply training a classification model using only image-level annotations, the feature map of the model can be utilized as a score map for localization. In spite of many WSOL methods proposing novel strategies, there has not been any de facto standard about how to normalize the class activation map (CAM). Consequently, many WSOL methods have failed to fully exploit their own capacity because of the misuse of a normalization method. In this paper, we review many existing normalization methods and point out that they should be used according to the property of the given dataset. Additionally, we propose a new normalization method which substantially enhances the performance of any CAM-based WSOL methods. Using the proposed normalization method, we provide a comprehensive evaluation over three datasets (CUB, ImageNet and OpenImages) on three different architectures and observe significant performance gains over the conventional min-max normalization method in all the evaluated cases.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا