ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-scale discriminative Region Discovery for Weakly-Supervised Object Localization

524   0   0.0 ( 0 )
 نشر من قبل Pei Lv
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Localizing objects with weak supervision in an image is a key problem of the research in computer vision community. Many existing Weakly-Supervised Object Localization (WSOL) approaches tackle this problem by estimating the most discriminative regions with feature maps (activation maps) obtained by Deep Convolutional Neural Network, that is, only the objects or parts of them with the most discriminative response will be located. However, the activation maps often display different local maximum responses or relatively weak response when one image contains multiple objects with the same type or small objects. In this paper, we propose a simple yet effective multi-scale discriminative region discovery method to localize not only more integral objects but also as many as possible with only image-level class labels. The gradient weights flowing into different convolutional layers of CNN are taken as the input of our method, which is different from previous methods only considering that of the final convolutional layer. To mine more discriminative regions for the task of object localization, the multiple local maximum from the gradient weight maps are leveraged to generate the localization map with a parallel sliding window. Furthermore, multi-scale localization maps from different convolutional layers are fused to produce the final result. We evaluate the proposed method with the foundation of VGGnet on the ILSVRC 2016, CUB-200-2011 and PASCAL VOC 2012 datasets. On ILSVRC 2016, the proposed method yields the Top-1 localization error of 48.65%, which outperforms previous results by 2.75%. On PASCAL VOC 2012, our approach achieve the highest localization accuracy of 0.43. Even for CUB-200-2011 dataset, our method still achieves competitive results.

قيم البحث

اقرأ أيضاً

133 - Kyle Mills , Isaac Tamblyn 2021
We demonstrate the use of an extensive deep neural network to localize instances of objects in images. The EDNN is naturally able to accurately perform multi-class counting using only ground truth count values as labels. Without providing any concept ual information, object annotations, or pixel segmentation information, the neural network is able to formulate its own conceptual representation of the items in the image. Using images labelled with only the counts of the objects present,the structure of the extensive deep neural network can be exploited to perform localization of the objects within the visual field. We demonstrate that a trained EDNN can be used to count objects in images much larger than those on which it was trained. In order to demonstrate our technique, we introduce seven new data sets: five progressively harder MNIST digit-counting data sets, and two datasets of 3d-rendered rubber ducks in various situations. On most of these datasets, the EDNN achieves greater than 99% test set accuracy in counting objects.
Weakly supervised semantic segmentation and localiza- tion have a problem of focusing only on the most important parts of an image since they use only image-level annota- tions. In this paper, we solve this problem fundamentally via two-phase learnin g. Our networks are trained in two steps. In the first step, a conventional fully convolutional network (FCN) is trained to find the most discriminative parts of an image. In the second step, the activations on the most salient parts are suppressed by inference conditional feedback, and then the second learning is performed to find the area of the next most important parts. By combining the activations of both phases, the entire portion of the tar- get object can be captured. Our proposed training scheme is novel and can be utilized in well-designed techniques for weakly supervised semantic segmentation, salient region detection, and object location prediction. Detailed experi- ments demonstrate the effectiveness of our two-phase learn- ing in each task.
Although recent advances in deep learning accelerated an improvement in a weakly supervised object localization (WSOL) task, there are still challenges to identify the entire body of an object, rather than only discriminative parts. In this paper, we propose a novel residual fine-grained attention (RFGA) module that autonomously excites the less activated regions of an object by utilizing information distributed over channels and locations within feature maps in combination with a residual operation. To be specific, we devise a series of mechanisms of triple-view attention representation, attention expansion, and feature calibration. Unlike other attention-based WSOL methods that learn a coarse attention map, having the same values across elements in feature maps, our proposed RFGA learns fine-grained values in an attention map by assigning different attention values for each of the elements. We validated the superiority of our proposed RFGA module by comparing it with the recent methods in the literature over three datasets. Further, we analyzed the effect of each mechanism in our RFGA and visualized attention maps to get insights.
101 - Jun Wei , Qin Wang , Zhen Li 2021
Weakly supervised object localization (WSOL) aims to localize objects by only utilizing image-level labels. Class activation maps (CAMs) are the commonly used features to achieve WSOL. However, previous CAM-based methods did not take full advantage o f the shallow features, despite their importance for WSOL. Because shallow features are easily buried in background noise through conventional fusion. In this paper, we propose a simple but effective Shallow feature-aware Pseudo supervised Object Localization (SPOL) model for accurate WSOL, which makes the utmost of low-level features embedded in shallow layers. In practice, our SPOL model first generates the CAMs through a novel element-wise multiplication of shallow and deep feature maps, which filters the background noise and generates sharper boundaries robustly. Besides, we further propose a general class-agnostic segmentation model to achieve the accurate object mask, by only using the initial CAMs as the pseudo label without any extra annotation. Eventually, a bounding box extractor is applied to the object mask to locate the target. Experiments verify that our SPOL outperforms the state-of-the-art on both CUB-200 and ImageNet-1K benchmarks, achieving 93.44% and 67.15% (i.e., 3.93% and 2.13% improvement) Top-5 localization accuracy, respectively.
Training object detectors with only image-level annotations is very challenging because the target objects are often surrounded by a large number of background clutters. Many existing approaches tackle this problem through object proposal mining. How ever, the collected positive regions are either low in precision or lack of diversity, and the strategy of collecting negative regions is not carefully designed, neither. Moreover, training is often slow because region selection and object detector training are processed separately. In this context, the primary contribution of this work is to improve weakly supervised detection with an optimized region selection strategy. The proposed method collects purified positive training regions by progressively removing easy background clutters, and selects discriminative negative regions by mining class-specific hard samples. This region selection procedure is further integrated into a CNN-based weakly supervised detection (WSD) framework, and can be performed in each stochastic gradient descent mini-batch during training. Therefore, the entire model can be trained end-to-end efficiently. Extensive evaluation results on PASCAL VOC 2007, VOC 2010 and VOC 2012 datasets are presented which demonstrate that the proposed method effectively improves WSD.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا