ﻻ يوجد ملخص باللغة العربية
In this perspective piece, I benchmark gallium arsenide, silicon, and germanium as material platforms for gate-defined quantum dot spin qubits. I focus on materials stacks, quantum dot architectures, bandstructure properties and qualifiers for disorder from electrical transport. This brief note is far from being exhaustive and should be considered a first introduction to the materials challenges and opportunities towards a larger spin qubit quantum processor.
We experimentally study the transport features of electrons in a spin-diode structure consisting of a single semiconductor quantum dot (QD) weakly coupled to one nonmagnetic (NM) and one ferromagnetic (FM) lead, in which the QD has an artificial atom
We present efficient methods to reliably characterize and tune gate-defined semiconductor spin qubits. Our methods are designed to target the tuning procedures of semiconductor double quantum dot in GaAs heterostructures, but can easily be adapted to
When a system is thermally coupled to only a small part of a larger bath, statistical fluctuations of the temperature (more precisely, the internal energy) of this sub-bath around the mean temperature defined by the larger bath can become significant
Using a laterally-fabricated quantum-dot (QD) spin-valve device, we experimentally study the Kondo effect in the electron transport through a semiconductor QD with an odd number of electrons (N). In a parallel magnetic configuration of the ferromagne
Triple quantum dots (TQDs) are promising semiconductor spin qubits because of their all-electrical control via fast, tunable exchange interactions and immunity to global magnetic fluctuations. These qubits can experience strong transverse interaction