ﻻ يوجد ملخص باللغة العربية
We present efficient methods to reliably characterize and tune gate-defined semiconductor spin qubits. Our methods are designed to target the tuning procedures of semiconductor double quantum dot in GaAs heterostructures, but can easily be adapted to other quantum-dot-like qubit systems. These tuning procedures include the characterization of the inter-dot tunnel coupling, the tunnel coupling to the surrounding leads and the identification of the various fast initialization points for the operation of the qubit. Since semiconductor-based spin qubits are compatible with standard semiconductor process technology and hence promise good prospects of scalability, the challenge of efficiently tuning the dots parameters will only grow in the near future, once the multi-qubit stage is reached. With the anticipation of being used as the basis for future automated tuning protocols, all measurements presented here are fast-to-execute and easy-to-analyze characterization methods. They result in quantitative measures of the relevant qubit parameters within a couple of seconds, and require almost no human interference.
In this perspective piece, I benchmark gallium arsenide, silicon, and germanium as material platforms for gate-defined quantum dot spin qubits. I focus on materials stacks, quantum dot architectures, bandstructure properties and qualifiers for disord
We demonstrate a 12 quantum dot device fabricated on an undoped Si/SiGe heterostructure as a proof-of-concept for a scalable, linear gate architecture for semiconductor quantum dots. The device consists of 9 quantum dots in a linear array and 3 singl
We use $vec{k}cdotvec{p}$ theory to estimate the Rashba spin-orbit coupling (SOC) in large semiconductor nanowires. We specifically investigate GaAs- and InSb-based devices with different gate configurations to control symmetry and localization of th
In recent years semiconducting qubits have undergone a remarkable evolution, making great strides in overcoming decoherence as well as in prospects for scalability, and have become one of the leading contenders for the development of large-scale quan
Quantum dots are arguably the best interface between matter spin qubits and flying photonic qubits. Using quantum dot devices to produce joint spin-photonic states requires the electronic spin qubits to be stored for extended times. Therefore, the st