ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-fold Weyl points in the Schrodinger operator with periodic potentials

92   0   0.0 ( 0 )
 نشر من قبل Haimo Guo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Weyl points are degenerate points on the spectral bands at which energy bands intersect conically. They are the origins of many novel physical phenomena and have attracted much attention recently. In this paper, we investigate the existence of such points in the spectrum of the 3-dimensional Schr{o}dinger operator $H = - Delta +V(textbf{x})$ with $V(textbf{x})$ being in a large class of periodic potentials. Specifically, we give very general conditions on the potentials which ensure the existence of 3-fold Weyl points on the associated energy bands. Different from 2-dimensional honeycomb structures which possess Dirac points where two adjacent band surfaces touch each other conically, the 3-fold Weyl points are conically intersection points of two energy bands with an extra band sandwiched in between. To ensure the 3-fold and 3-dimensional conical structures, more delicate, new symmetries are required. As a consequence, new techniques combining more symmetries are used to justify the existence of such conical points under the conditions proposed. This paper provides comprehensive proof of such 3-fold Weyl points. In particular, the role of each symmetry endowed to the potential is carefully analyzed. Our proof extends the analysis on the conical spectral points to a higher dimension and higher multiplicities. We also provide some numerical simulations on typical potentials to demonstrate our analysis.



قيم البحث

اقرأ أيضاً

We prove Anderson localization at the internal band-edges for periodic magnetic Schr{o}dinger operators perturbed by random vector potentials of Anderson-type. This is achieved by combining new results on the Lifshitz tails behavior of the integrated density of states for random magnetic Schr{o}dinger operators, thereby providing the initial length-scale estimate, and a Wegner estimate, for such models.
We study the spectrum of the linear operator $L = - partial_{theta} - epsilon partial_{theta} (sin theta partial_{theta})$ subject to the periodic boundary conditions on $theta in [-pi,pi]$. We prove that the operator is closed in $L^2([-pi,pi])$ wit h the domain in $H^1_{rm per}([-pi,pi])$ for $|epsilon| < 2$, its spectrum consists of an infinite sequence of isolated eigenvalues and the set of corresponding eigenfunctions is complete. By using numerical approximations of eigenvalues and eigenfunctions, we show that all eigenvalues are simple, located on the imaginary axis and the angle between two subsequent eigenfunctions tends to zero for larger eigenvalues. As a result, the complete set of linearly independent eigenfunctions does not form a basis in $H^1_{rm per}([-pi,pi])$.
We consider a Dirac operator with a dislocation potential on the real line. The dislocation potential is a fixed periodic potential on the negative half-line and the same potential but shifted by real parameter $t$ on the positive half-line. Its spec trum has an absolutely continuous part (the union of bands separated by gaps) plus at most two eigenvalues in each non-empty gap. Its resolvent admits a meromorphic continuation onto a two-sheeted Riemann surface. We prove that it has only two simple poles on each open gap: on the first sheet (an eigenvalue) or on the second sheet (a resonance). These poles are called states and there are no other poles. We prove: 1) each state is a continuous function of $t$, and we obtain its local asymptotic; 2) for each $t$ states in the gap are distinct; 3) in general, a state is non-monotone function of $t$ but it can be monotone for specific potentials; 4) we construct examples of operators, which have: a) one eigenvalue and one resonance in any finite number of gaps; b) two eigenvalues or two resonances in any finite number of gaps; c) two static virtual states in one gap.
We consider the Landau Hamiltonian $H_0$, self-adjoint in $L^2({mathbb R^2})$, whose spectrum consists of an arithmetic progression of infinitely degenerate positive eigenvalues $Lambda_q$, $q in {mathbb Z}_+$. We perturb $H_0$ by a non-local potenti al written as a bounded pseudo-differential operator ${rm Op}^{rm w}({mathcal V})$ with real-valued Weyl symbol ${mathcal V}$, such that ${rm Op}^{rm w}({mathcal V}) H_0^{-1}$ is compact. We study the spectral properties of the perturbed operator $H_{{mathcal V}} = H_0 + {rm Op}^{rm w}({mathcal V})$. First, we construct symbols ${mathcal V}$, possessing a suitable symmetry, such that the operator $H_{mathcal V}$ admits an explicit eigenbasis in $L^2({mathbb R^2})$, and calculate the corresponding eigenvalues. Moreover, for ${mathcal V}$ which are not supposed to have this symmetry, we study the asymptotic distribution of the eigenvalues of $H_{mathcal V}$ adjoining any given $Lambda_q$. We find that the effective Hamiltonian in this context is the Toeplitz operator ${mathcal T}_q({mathcal V}) = p_q {rm Op}^{rm w}({mathcal V}) p_q$, where $p_q$ is the orthogonal projection onto ${rm Ker}(H_0 - Lambda_q I)$, and investigate its spectral asymptotics.
261 - Monika Winklmeier 2008
The operator associated to the angular part of the Dirac equation in the Kerr-Newman background metric is a block operator matrix with bounded diagonal and unbounded off-diagonal entries. The aim of this paper is to establish a variational principle for block operator matrices of this type and to derive thereof upper and lower bounds for the angular operator mentioned above. In the last section, these analytic bounds are compared to numerical values from the literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا