ترغب بنشر مسار تعليمي؟ اضغط هنا

Localization for Schrodinger operators with random vector potentials

129   0   0.0 ( 0 )
 نشر من قبل Peter Hislop
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove Anderson localization at the internal band-edges for periodic magnetic Schr{o}dinger operators perturbed by random vector potentials of Anderson-type. This is achieved by combining new results on the Lifshitz tails behavior of the integrated density of states for random magnetic Schr{o}dinger operators, thereby providing the initial length-scale estimate, and a Wegner estimate, for such models.


قيم البحث

اقرأ أيضاً

Weyl points are degenerate points on the spectral bands at which energy bands intersect conically. They are the origins of many novel physical phenomena and have attracted much attention recently. In this paper, we investigate the existence of such p oints in the spectrum of the 3-dimensional Schr{o}dinger operator $H = - Delta +V(textbf{x})$ with $V(textbf{x})$ being in a large class of periodic potentials. Specifically, we give very general conditions on the potentials which ensure the existence of 3-fold Weyl points on the associated energy bands. Different from 2-dimensional honeycomb structures which possess Dirac points where two adjacent band surfaces touch each other conically, the 3-fold Weyl points are conically intersection points of two energy bands with an extra band sandwiched in between. To ensure the 3-fold and 3-dimensional conical structures, more delicate, new symmetries are required. As a consequence, new techniques combining more symmetries are used to justify the existence of such conical points under the conditions proposed. This paper provides comprehensive proof of such 3-fold Weyl points. In particular, the role of each symmetry endowed to the potential is carefully analyzed. Our proof extends the analysis on the conical spectral points to a higher dimension and higher multiplicities. We also provide some numerical simulations on typical potentials to demonstrate our analysis.
We study the Bloch variety of discrete Schrodinger operators associated with a complex periodic potential and a general finite-range interaction, showing that the Bloch variety is irreducible for a wide class of lattice geometries in arbitrary dimens ion. Examples include the triangular lattice and the extended Harper lattice.
We develop a general technique for finding self-adjoint extensions of a symmetric operator that respect a given set of its symmetries. Problems of this type naturally arise when considering two- and three-dimensional Schrodinger operators with singul ar potentials. The approach is based on constructing a unitary transformation diagonalizing the symmetries and reducing the initial operator to the direct integral of a suitable family of partial operators. We prove that symmetry preserving self-adjoint extensions of the initial operator are in a one-to-one correspondence with measurable families of self-adjoint extensions of partial operators obtained by reduction. The general construction is applied to the three-dimensional Aharonov-Bohm Hamiltonian describing the electron in the magnetic field of an infinitely thin solenoid.
Motivated by the long-time transport properties of quantum waves in weakly disordered media, the present work puts random Schrodinger operators into a new spectral perspective. Based on a stationary random version of a Floquet type fibration, we redu ce the description of the quantum dynamics to a fibered family of abstract spectral perturbation problems on the underlying probability space. We state a natural resonance conjecture for these fibered operators: in contrast with periodic and quasiperiodic settings, this would entail that Bloch waves do not exist as extended states, but rather as resonant modes, and this would justify the expected exponential decay of time correlations. Although this resonance conjecture remains open, we develop new tools for spectral analysis on the probability space, and in particular we show how ideas from Malliavin calculus lead to rigorous Mourre type results: we obtain an approximate dynamical resonance result and the first spectral proof of the decay of time correlations on the kinetic timescale. This spectral approach suggests a whole new way of circumventing perturbative expansions and renormalization techniques.
We prove that the local eigenvalue statistics at energy $E$ in the localization regime for Schrodinger operators with random point interactions on $mathbb{R}^d$, for $d=1,2,3$, is a Poisson point process with the intensity measure given by the densit y of states at $E$ times the Lebesgue measure. This is one of the first examples of Poisson eigenvalue statistics for the localization regime of multi-dimensional random Schrodinger operators in the continuum. The special structure of resolvent of Schrodinger operators with point interactions facilitates the proof of the Minami estimate for these models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا