ﻻ يوجد ملخص باللغة العربية
We study the spectrum of the linear operator $L = - partial_{theta} - epsilon partial_{theta} (sin theta partial_{theta})$ subject to the periodic boundary conditions on $theta in [-pi,pi]$. We prove that the operator is closed in $L^2([-pi,pi])$ with the domain in $H^1_{rm per}([-pi,pi])$ for $|epsilon| < 2$, its spectrum consists of an infinite sequence of isolated eigenvalues and the set of corresponding eigenfunctions is complete. By using numerical approximations of eigenvalues and eigenfunctions, we show that all eigenvalues are simple, located on the imaginary axis and the angle between two subsequent eigenfunctions tends to zero for larger eigenvalues. As a result, the complete set of linearly independent eigenfunctions does not form a basis in $H^1_{rm per}([-pi,pi])$.
In the present paper we investigate the set $Sigma_J$ of all $J$-self-adjoint extensions of a symmetric operator $S$ with deficiency indices $<2,2>$ which commutes with a non-trivial fundamental symmetry $J$ of a Krein space $(mathfrak{H}, [cdot,cdot
Weyl points are degenerate points on the spectral bands at which energy bands intersect conically. They are the origins of many novel physical phenomena and have attracted much attention recently. In this paper, we investigate the existence of such p
The Cauchy problem is studied for the self-adjoint and non-self-adjoint Schroedinger equations. We first prove the existence and uniqueness of solutions in the weighted Sobolev spaces. Secondly we prove that if potentials are depending continuously a
We consider some compact non-selfadjoint perturbations of fibered one-dimensional discrete Schrodinger operators. We show that the perturbed operator exhibits finite discrete spectrum under suitable- regularity conditions.
We consider a Dirac operator with a dislocation potential on the real line. The dislocation potential is a fixed periodic potential on the negative half-line and the same potential but shifted by real parameter $t$ on the positive half-line. Its spec