ﻻ يوجد ملخص باللغة العربية
In this article, we consider the focusing cubic nonlinear Schrodinger equation(NLS) in the exterior domain outside of a convex obstacle in $mathbb{R}^3$ with Dirichlet boundary conditions. We revisit the scattering result below ground state of Killip-Visan-Zhang by utilizing Dodson and Murphys argument and the dispersive estimate established by Ivanovici and Lebeau, which avoids using the concentration compactness. We conquer the difficulty of the boundary in the focusing case by establishing a local smoothing effect of the boundary. Based on this effect and the interaction Morawetz estimates, we prove the solution decays at a large time interval, which meets the scattering criterions.
We consider the large data scattering problem for the 2D and 3D cubic-quintic NLS in the focusing-focusing regime. Our attention is firstly restricted to the 2D space, where the cubic nonlinearity is $L^2$-critical. We establish a new type of scatter
In this paper, we study the scattering theory for the cubic inhomogeneous Schrodinger equations with inverse square potential $iu_t+Delta u-frac{a}{|x|^2}u=lambda |x|^{-b}|u|^2u$ with $a>-frac14$ and $0<b<1$ in dimension three. In the defocusing case
We adapt the arguments in the recent work of Duyckaerts, Landoulsi, and Roudenko to establish a scattering result at the sharp threshold for the $3d$ focusing cubic NLS with a repulsive potential. We treat both the case of short-range potentials as p
We consider the nonlinear Schrodinger equation in three space dimensions with combined focusing cubic and defocusing quintic nonlinearity. This problem was considered previously by Killip, Oh, Pocovnicu, and Visan, who proved scattering for the whole
We study the construction of the Gibbs measures for the {it focusing} mass-critical fractional nonlinear Schrodinger equation on the multi-dimensional torus. We identify the sharp mass threshold for normalizability and non-normalizability of the focu