ترغب بنشر مسار تعليمي؟ اضغط هنا

Atomic-scale insights into electro-steric substitutional chemistry of cerium oxide

240   0   0.0 ( 0 )
 نشر من قبل Haiwu Zhang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cerium oxide (ceria, CeO2) is one of the most promising mixed ionic and electronic conducting materials. Previous atomistic analysis has covered widely the effects of substitution on oxygen vacancy migration. However, an in-depth analysis of the role of cation substitution beyond trivalent cations has rarely been explored. Here, we investigate soluble monovalent, divalent, trivalent and tetravalent cation substituents. By combining classical simulations and quantum mechanical calculations, we provide an insight into defect association energies between substituent cations and oxygen vacancies as well as their effects on the diffusion mechanisms. Our simulations indicate that oxygen ionic diffusivity of subvalent cation-substituted systems follows the order Gd>Ca>Na. With the same charge, a larger size mismatch with Ce cation yields a lower oxygen ionic diffusivity, i.e., Na>K, Ca>Ni, Gd>Al. Based on these trends, we identify species that could tune the oxygen ionic diffusivity: we estimate that the optimum oxygen vacancy concentration for achieving fast oxygen ionic transport is 2.5% for GdxCe1-xO2-x/2, CaxCe1-xO2-x and NaxCe1-xO2-3x/2 at 800 K. Remarkably, such a concentration is not constant and shifts gradually to higher values as the temperature is increased. We find that co-substitutions can enhance the impact of the single substitutions beyond that expected by their simple addition. Furthermore, we identify preferential oxygen ion migration pathways, which illustrate the electro-steric effects of substituent cations in determining the energy barrier of oxygen ion migration. Such fundamental insights into the factors that govern the oxygen diffusion coefficient and migration energy would enable design criteria to be defined for tuning the ionic properties of the material, e.g., by co-doping.

قيم البحث

اقرأ أيضاً

In this work, we report on the mechanical responses and fracture behavior of pristine and defected monolayer 1T-Titanium Disulfide using classical molecular dynamics simulation. We investigated the effect of temperature, strain rate and defect ratio on the uniaxial tensile properties in both armchair and zigzag direction. We found that monolayer TiS2 shows isotropic uniaxial tensile properties except for failure strain which is greater in zigzag direction than armchair direction. We also observed a negative correlation of ultimate tensile strength, failure strain and youngs modulus with temperature and defect ratio. Results depicts that strain rate has no effect on the youngs modulus of monolayer TiS2 but higher strain rate results in higher ultimate tensile strength and failure strain.
We develop a generalized theory for the scattering process produced by interface roughness on charge carriers and which is suitable for any semiconductor heterostructure. By exploiting our experimental insights into the three-dimensional atomic lands cape obtained on Ge/GeSi heterointerfaces obtained by atom probe tomography, we have been able to define the full set of interface parameters relevant to the scattering potential, including both the in-plane and axial correlation inside real diffuse interfaces. Our experimental findings indicate a partial coherence of the interface roughness along the growth direction within the interfaces. We show that it is necessary to include this feature, previously neglected by theoretical models, when heterointerfaces characterized by finite interface widths are taken into consideration.
Research on cerium oxide nanoparticles (nanoceria) has captivated the scientific community due to their unique physical and chemical properties, such as redox activity and oxygen buffering capacity, which made them available for many technical applic ations, including biomedical applications. The redox mimetic antioxidant properties of nanoceria have been effective in the treatment of many diseases caused by reactive oxygen species (ROS) and reactive nitrogen species. The mechanism of ROS scavenging activity of nanoceria is still elusive, and its redox activity is controversial due to mixed reports in the literature showing pro-oxidant and antioxidant activity. In lieu of its current research interest, it is critical to understand the behaviour of nanoceria in the biological environment and provide answers to some of the critical and open issues. This review critically analyses the status of research on the application of nanoceria to treat diseases caused by ROS. It reviews the proposed mechanism of action and shows the effect of surface coatings on its redox activity. It also discusses some of the crucial issues in deciphering the mechanism and redox activity of nanoceria and suggests areas of future research.
267 - Peng Gao , Ryo Ishikawa , Bin Feng 2017
By using the state-of-the-art microscopy and spectroscopy in aberration-corrected scanning transmission electron microscopes, we determine the atomic arrangements, occupancy, elemental distribution, and the electronic structures of dislocation cores in the 10{deg}tilted SrTiO3 bicrystal. We identify that there are two different types of oxygen deficient dislocation cores, i.e., the SrO plane terminated Sr0.82Ti0.85O3-x (Ti3.67+, 0.48<x<0.91) and TiO2 plane terminated Sr0.63Ti0.90O3-y (Ti3.60+, 0.57<y<1). They have the same Burgers vector of a[100] but different atomic arrangements and chemical properties. Besides the oxygen vacancies, Sr vacancies and rocksalt-like titanium oxide reconstruction are also identified in the dislocation core with TiO2 plane termination. Our atomic-scale study reveals the true atomic structures and chemistry of individual dislocation cores, providing useful insights into understanding the properties of dislocations and grain boundaries.
Oxidative stress, which is one of the main harmful mechanisms of pathologies including is-chemic stroke, contributes to both neurons and endothelial cell damages, leading to vascular lesions. Although many antioxidants have been tested in preclinical studies, no treatment is currently available for stroke patients. Since cerium oxide nanoparticles (CNPs) exhibit remarkable antioxidant capacities, our objective is to develop an innovative coating to enhance CNPs biocompatibility without disrupting their antioxidant capacities or enhance their toxicity. This study reports the synthesis and characterization of functional polymers and their impact on the enzyme-like catalytic activity of CNPs. To study the toxicity and the antioxidant properties of CNPs for stroke and particularly endothelial damages, in vitro studies are conducted on a cerebral endothelial cell line (bEnd.3). Despite their internalization in bEnd.3 cells, coated CNPs are devoid of cytotoxicity. Microscopy studies report an intracellular localization of CNPs, more precisely in endosomes. All CNPs reduces glutamate-induced intracellular production of ROS in endothelial cells but one CNP significantly reduces both the production of mitochondrial super-oxide anion and DNA oxidation. In vivo studies report a lack of toxicity in mice. This study there-fore describes and identifies biocompatible CNPs with interesting antioxidant properties for ischemic stroke and related pathologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا