ترغب بنشر مسار تعليمي؟ اضغط هنا

Atomic-scale insights into semiconductor heterostructures: from experimental three-dimensional analysis of the interface to a generalized theory of interface roughness scattering

151   0   0.0 ( 0 )
 نشر من قبل Luca Persichetti
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a generalized theory for the scattering process produced by interface roughness on charge carriers and which is suitable for any semiconductor heterostructure. By exploiting our experimental insights into the three-dimensional atomic landscape obtained on Ge/GeSi heterointerfaces obtained by atom probe tomography, we have been able to define the full set of interface parameters relevant to the scattering potential, including both the in-plane and axial correlation inside real diffuse interfaces. Our experimental findings indicate a partial coherence of the interface roughness along the growth direction within the interfaces. We show that it is necessary to include this feature, previously neglected by theoretical models, when heterointerfaces characterized by finite interface widths are taken into consideration.



قيم البحث

اقرأ أيضاً

85 - Xinxin Cai , Jin Yue , Peng Xu 2020
Quantum corrections to electrical resistance can serve as sensitive probes of the magnetic landscape of a material. For example, interference between time-reversed electron paths gives rise to weak localization effects, which can provide information about the coupling between spins and orbital motion, while the Kondo effect is sensitive to the presence of spin impurities. Here we use low-temperature magnetotransport measurements to reveal a transition from weak antilocalization (WAL) to Kondo scattering in the quasi-two-dimensional electron gas formed at the interface between SrTiO$_3$ and the Mott insulator NdTiO$_3$. This transition occurs as the thickness of the NdTiO$_3$ layer is increased. Analysis of the Kondo scattering and WAL points to the presence of atomic-scale magnetic impurities coexisting with extended magnetic regions that affect transport via a strong magnetic exchange interaction. This leads to distinct magnetoresistance behaviors that can serve as a sensitive probe of magnetic properties in two dimensions.
Electrical spin injection into semiconductors paves the way for exploring new phenomena in the area of spin physics and new generations of spintronic devices. However the exact role of interface states in spin injection mechanism from a magnetic tunn el junction into a semiconductor is still under debate. In this letter, we demonstrate a clear transition from spin accumulation into interface states to spin injection in the conduction band of $n$-Ge. We observe spin signal amplification at low temperature due to spin accumulation into interface states followed by a clear transition towards spin injection in the conduction band from 200 K up to room temperature. In this regime, the spin signal is reduced down to a value compatible with spin diffusion model. More interestingly, we demonstrate in this regime a significant modulation of the spin signal by spin pumping generated by ferromagnetic resonance and also by applying a back-gate voltage which are clear manifestations of spin current and accumulation in the germanium conduction band.
170 - Bo Han , Chen Yang , Xiaolong Xu 2019
Contact interface properties are important in determining the performances of devices based on atomically thin two-dimensional (2D) materials, especially those with short channels. Understanding the contact interface is therefore quite important to d esign better devices. Herein, we use scanning transmission electron microscopy, electron energy loss spectroscopy, and first-principles calculations to reveal the electronic structures within the metallic (1T)-semiconducting (2H) MoTe2 coplanar phase boundary across a wide spectral range and correlate its properties and atomic structure. We find that the 2H-MoTe2 excitonic peaks cross the phase boundary into the 1T phase within a range of approximately 150 nm. The 1T-MoTe2 crystal field can penetrate the boundary and extend into the 2H phase by approximately two unit cells. The plasmonic oscillations exhibit strong angle dependence, i.e., a red-shift (approximately 0.3 eV-1.2 eV) occurs within 4 nm at 1T/2H-MoTe2 boundaries with large tilt angles, but there is no shift at zero-tilted boundaries. These atomic-scale measurements reveal the structure-property relationships of 1T/2H-MoTe2 boundary, providing useful information for phase boundary engineering and device development based on 2D materials.
Whereas spintronics brings the spin degree of freedom to electronic devices, molecular/organic electronics adds the opportunity to play with the chemical versatility. Here we show how, as a contender to commonly used inorganic materials, organic/mole cular based spintronics devices can exhibit very large magnetoresistance and lead to tailored spin polarizations. We report on giant tunnel magnetoresistance of up to 300% in a (La,Sr)MnO3/Alq3/Co nanometer size magnetic tunnel junction. Moreover, we propose a spin dependent transport model giving a new understanding of spin injection into organic materials/molecules. Our findings bring a new insight on how one could tune spin injection by molecular engineering and paves the way to chemical tailoring of the properties of spintronics devices.
Ab initio calculations using the local spin density approximation and also including the Hubbard $U$ have been performed for three low energy configurations of the interface between LaAlO$_3$ and TiO$_2$-anatase. Two types of interfaces have been con sidered: LaO/TiO$_2$ and AlO$_2$/TiO, the latter with Ti-termination and therefore a missing oxygen. A slab-geometry calculation was carried out and all the atoms were allowed to relax in the direction normal to the interface. In all the cases considered, the interfacial Ti atom acquires a local magnetic moment and its formal valence is less than +4. When there are oxygen vacancies, this valence decreases abruptly inside the anatase slab while in the LaO/TiO$_2$ interface the changes are more gradual.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا