ﻻ يوجد ملخص باللغة العربية
Oxidative stress, which is one of the main harmful mechanisms of pathologies including is-chemic stroke, contributes to both neurons and endothelial cell damages, leading to vascular lesions. Although many antioxidants have been tested in preclinical studies, no treatment is currently available for stroke patients. Since cerium oxide nanoparticles (CNPs) exhibit remarkable antioxidant capacities, our objective is to develop an innovative coating to enhance CNPs biocompatibility without disrupting their antioxidant capacities or enhance their toxicity. This study reports the synthesis and characterization of functional polymers and their impact on the enzyme-like catalytic activity of CNPs. To study the toxicity and the antioxidant properties of CNPs for stroke and particularly endothelial damages, in vitro studies are conducted on a cerebral endothelial cell line (bEnd.3). Despite their internalization in bEnd.3 cells, coated CNPs are devoid of cytotoxicity. Microscopy studies report an intracellular localization of CNPs, more precisely in endosomes. All CNPs reduces glutamate-induced intracellular production of ROS in endothelial cells but one CNP significantly reduces both the production of mitochondrial super-oxide anion and DNA oxidation. In vivo studies report a lack of toxicity in mice. This study there-fore describes and identifies biocompatible CNPs with interesting antioxidant properties for ischemic stroke and related pathologies.
Research on cerium oxide nanoparticles (nanoceria) has captivated the scientific community due to their unique physical and chemical properties, such as redox activity and oxygen buffering capacity, which made them available for many technical applic
Cerium oxide nanoparticles have been shown to mimic oxidoreductase enzymes by catalyzing the decomposition of organic substrates and reactive oxygen species. This mimicry can be found in superoxide radicals and hydrogen peroxides, harmful molecules p
Cerium oxide (ceria, CeO2) is one of the most promising mixed ionic and electronic conducting materials. Previous atomistic analysis has covered widely the effects of substitution on oxygen vacancy migration. However, an in-depth analysis of the role
We calculate from first principles the electronic structure, relaxation and magnetic moments in small Fe particles, applying the numerical local orbitals method in combination with norm-conserving pseudopotentials. The accuracy of the method in descr
We report a study on the pressure response of the anisotropy energy of hollow and solid maghemite nanoparticles. The differences between the maghemite samples are understood in terms of size, magnetic anisotropy and shape of the particles. In particu