ﻻ يوجد ملخص باللغة العربية
The majority of massive stars live in binary or multiple systems and will interact during their lifetimes, which helps to explain the observed diversity of core-collapse supernovae. Donor stars in binary systems can lose most of their hydrogen-rich envelopes through mass transfer, which not only affects the surface properties, but also the core structure. However, most calculations of the core-collapse properties of massive stars rely on single-star models. We present a systematic study of the difference between the pre-supernova structures of single stars and stars of the same initial mass (11 - 21Msun) that have been stripped due to stable post-main sequence mass transfer at solar metallicity. We present the pre-supernova core composition with novel diagrams that give an intuitive representation of the isotope distribution. As shown in previous studies, at the edge of the carbon-oxygen core, the binary-stripped star models contain an extended gradient of carbon, oxygen, and neon. This layer originates from the receding of the convective helium core during core helium burning in binary-stripped stars, which does not occur in single-star models. We find that this same evolutionary phase leads to systematic differences in the final density and nuclear energy generation profiles. Binary-stripped star models have systematically higher total masses of carbon at the moment of core collapse compared to single star models, which likely results in systematically different supernova yields. In about half of our models, the silicon-burning and oxygen-rich layers merge after core silicon burning. We discuss the implications of our findings for the explodability, supernova observations, and nucleosynthesis from these stars. Our models will be publicly available and can be readily used as input for supernova simulations. [Abridged]
Most massive stars are born in binary or higher-order multiple systems and exchange mass with a companion during their lives. In particular, the progenitors of a large fraction of compact object mergers, and Galactic neutron stars (NSs) and black hol
Massive stars are key sources of radiative, kinetic, and chemical feedback in the universe. Grids of massive star models computed by different groups each using their own codes, input physics choices and numerical approximations, however, lead to inc
Extensive optical and near-infrared (NIR) observations of the type IIb supernova 2008ax are presented, covering the first year after the explosion. The light curve is mostly similar in shape to that of the prototypical type IIb SN 1993J, but shows a
Radioactive nuclei were present in the early Solar System, as inferred from analysis of meteorites. Many are produced in massive stars, either during their lives or their final explosions. In the first paper in this series (Brinkman et al. 2019), we
We highlight the role of the light elements (Li, Be, B) in the evolution of massive single and binary stars, which is largely restricted to a diagnostic value, and foremost so for the element boron. However, we show that the boron surface abundance i