ترغب بنشر مسار تعليمي؟ اضغط هنا

Different to the core: the pre-supernova structures of massive single and binary-stripped stars

336   0   0.0 ( 0 )
 نشر من قبل Eva Laplace
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The majority of massive stars live in binary or multiple systems and will interact during their lifetimes, which helps to explain the observed diversity of core-collapse supernovae. Donor stars in binary systems can lose most of their hydrogen-rich envelopes through mass transfer, which not only affects the surface properties, but also the core structure. However, most calculations of the core-collapse properties of massive stars rely on single-star models. We present a systematic study of the difference between the pre-supernova structures of single stars and stars of the same initial mass (11 - 21Msun) that have been stripped due to stable post-main sequence mass transfer at solar metallicity. We present the pre-supernova core composition with novel diagrams that give an intuitive representation of the isotope distribution. As shown in previous studies, at the edge of the carbon-oxygen core, the binary-stripped star models contain an extended gradient of carbon, oxygen, and neon. This layer originates from the receding of the convective helium core during core helium burning in binary-stripped stars, which does not occur in single-star models. We find that this same evolutionary phase leads to systematic differences in the final density and nuclear energy generation profiles. Binary-stripped star models have systematically higher total masses of carbon at the moment of core collapse compared to single star models, which likely results in systematically different supernova yields. In about half of our models, the silicon-burning and oxygen-rich layers merge after core silicon burning. We discuss the implications of our findings for the explodability, supernova observations, and nucleosynthesis from these stars. Our models will be publicly available and can be readily used as input for supernova simulations. [Abridged]

قيم البحث

اقرأ أيضاً

Most massive stars are born in binary or higher-order multiple systems and exchange mass with a companion during their lives. In particular, the progenitors of a large fraction of compact object mergers, and Galactic neutron stars (NSs) and black hol es (BHs) have been stripped off their envelopes by a binary companion. Here, we study the evolution of single and stripped binary stars up to core collapse with the stellar evolution code MESA and their final fates with a parametric supernova (SN) model. We find that stripped binary stars can have systematically different pre-SN structures compared to genuine single stars and thus also different SN outcomes. The bases of these differences are already established by the end of core helium burning and are preserved up to core collapse. We find a non-monotonic pattern of NS and BH formation as a function of CO core mass that is different in single and stripped binary stars. In terms of initial masses, single stars of >35 Msun all form BHs, while this transition is only at 70 Msun in stripped stars. On average, stripped stars give rise to lower NS and BH masses, higher explosion energies, higher kick velocities and higher nickel yields. Within a simplified population synthesis model, we show that our results lead to a significant reduction of the rates of BH-NS and BH-BH mergers with respect to typical assumptions made on NS and BH formation. Therefore, we predict lower detection rates of such merger events by, e.g., advanced LIGO than is often considered. We further show how features in the NS-BH mass distribution of single and stripped stars relate to the chirp-mass distribution of compact object mergers. Further implications of our findings are discussed with respect to the missing red-supergiant problem, a possible mass gap between NSs and BHs, X-ray binaries and observationally inferred nickel masses from Type Ib/c and IIP Sne. [abridged]
58 - Samuel Jones 2014
Massive stars are key sources of radiative, kinetic, and chemical feedback in the universe. Grids of massive star models computed by different groups each using their own codes, input physics choices and numerical approximations, however, lead to inc onsistent results for the same stars. We use three of these 1D codes---GENEC, KEPLER and MESA---to compute non-rotating stellar models of $15~mathrm{M}_odot$, $20~mathrm{M}_odot$, and $25~mathrm{M}_odot$ and compare their nucleosynthesis. We follow the evolution from the main sequence until the end of core helium burning. The GENEC and KEPLER models hold physics assumptions used in large grids of published models. The MESA code was set up to use convective core overshooting such that the CO core masses are consistent with those obtained by GENEC. For all models, full nucleosynthesis is computed using the NuGrid post-processing tool MPPNP. We find that the surface abundances predicted by the models are in reasonable agreement. In the helium core, the standard deviation of the elemental overproduction factors for Fe to Mo is less than $30,%$---smaller than the impact of the present nuclear physics uncertainties. For our three initial masses, the three stellar evolution codes yield consistent results. Differences in key properties of the models, e.g., helium and CO core masses and the time spent as a red supergiant, are traced back to the treatment of convection and, to a lesser extent, mass loss. The mixing processes in stars remain the key uncertainty in stellar modelling. Better constrained prescriptions are thus necessary to improve the predictive power of stellar evolution models.
Extensive optical and near-infrared (NIR) observations of the type IIb supernova 2008ax are presented, covering the first year after the explosion. The light curve is mostly similar in shape to that of the prototypical type IIb SN 1993J, but shows a slightly faster decline rate at late phases and lacks the prominent narrow early-time peak of SN 1993J. From the bolometric light curve and ejecta expansion velocities, we estimate that about 0.07-0.15 solar masses of 56Ni were produced during the explosion and that the total ejecta mass was between 2 and 5 solar masses, with a kinetic energy of at least 10^51 erg. The spectral evolution of SN 2008ax is similar to that of the type Ib SN 2007Y, exhibiting high-velocity Ca II features at early phases and signs of ejecta-wind interaction from H-alpha observations at late times. NIR spectra show strong He I lines similar to the type Ib SN 1999ex, and a large number of emission features at late times. Particularly interesting are the strong, double-peaked He I lines in late NIR spectra, which - together with double-peaked [O I] emission in late optical spectra - provide clues for asymmetry and large-scale Ni mixing in the ejecta.
Radioactive nuclei were present in the early Solar System, as inferred from analysis of meteorites. Many are produced in massive stars, either during their lives or their final explosions. In the first paper in this series (Brinkman et al. 2019), we focused on the production of $^{26}$Al in massive binaries. Here, we focus on the production of another two short-lived radioactive nuclei, $^{36}$Cl and $^{41}$Ca, and the comparison to the early Solar System data. We used the MESA stellar evolution code with an extended nuclear network and computed massive (10-80 M$ _{odot} $), rotating (with initial velocities of 150 and 300 km/s) and non-rotating single stars at solar metallicity (Z=0.014) up to the onset of core collapse. We present the wind yields for the radioactive isotopes $^{26}$Al, $^{36}$Cl, and $^{41}$Ca, and the stable isotopes $^{19}$F and $^{20}$Ne. In relation to the stable isotopes, we find that only the most massive models, $geq$ 60M$_{odot}$ and $geq$ 40M$_{odot}$ give positive $^{19}$F and $^{20}$Ne yields, respectively, depending on the initial rotation rate. In relation to the radioactive isotopes, we find that the early Solar System abundances of $^{26}$Al and $^{41}$Ca can be matched with by models with initial masses $geq$40M$_{odot}$, while $^{36}$Cl is matched only by our most massive models, $geq$60M$_{odot}$. $^{60}$Fe is not significantly produced by any wind model, as required by the observations. Therefore, massive star winds are a favoured candidate for the origin of the very short-lived $^{26}$Al, $^{36}$Cl, and $^{41}$Ca in the early Solar System.
We highlight the role of the light elements (Li, Be, B) in the evolution of massive single and binary stars, which is largely restricted to a diagnostic value, and foremost so for the element boron. However, we show that the boron surface abundance i n massive early type stars contains key information about their foregoing evolution which is not obtainable otherwise. In particular, it allows to constrain internal mixing processes and potential previous mass transfer event for binary stars (even if the companion has disappeared). It may also help solving the mystery of the slowly rotating nitrogen-rich massive main sequence stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا