ترغب بنشر مسار تعليمي؟ اضغط هنا

The He-rich Stripped-Envelope Core-Collapse Supernova 2008ax

163   0   0.0 ( 0 )
 نشر من قبل Stefan Taubenberger
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Extensive optical and near-infrared (NIR) observations of the type IIb supernova 2008ax are presented, covering the first year after the explosion. The light curve is mostly similar in shape to that of the prototypical type IIb SN 1993J, but shows a slightly faster decline rate at late phases and lacks the prominent narrow early-time peak of SN 1993J. From the bolometric light curve and ejecta expansion velocities, we estimate that about 0.07-0.15 solar masses of 56Ni were produced during the explosion and that the total ejecta mass was between 2 and 5 solar masses, with a kinetic energy of at least 10^51 erg. The spectral evolution of SN 2008ax is similar to that of the type Ib SN 2007Y, exhibiting high-velocity Ca II features at early phases and signs of ejecta-wind interaction from H-alpha observations at late times. NIR spectra show strong He I lines similar to the type Ib SN 1999ex, and a large number of emission features at late times. Particularly interesting are the strong, double-peaked He I lines in late NIR spectra, which - together with double-peaked [O I] emission in late optical spectra - provide clues for asymmetry and large-scale Ni mixing in the ejecta.



قيم البحث

اقرأ أيضاً

The velocity of the inner ejecta of stripped-envelope core-collapse supernovae (CC-SNe) is studied by means of an analysis of their nebular spectra. Stripped-envelope CC-SNe are the result of the explosion of bare cores of massive stars ($geq 8$ M$_{ odot}$), and their late-time spectra are typically dominated by a strong [O {sc i}] $lambdalambda$6300, 6363 emission line produced by the innermost, slow-moving ejecta which are not visible at earlier times as they are located below the photosphere. A characteristic velocity of the inner ejecta is obtained for a sample of 56 stripped-envelope CC-SNe of different spectral types (IIb, Ib, Ic) using direct measurements of the line width as well as spectral fitting. For most SNe, this value shows a small scatter around 4500 km s$^{-1}$. Observations ($< 100$ days) of stripped-envelope CC-SNe have revealed a subclass of very energetic SNe, termed broad-lined SNe (BL-SNe) or hypernovae, which are characterised by broad absorption lines in the early-time spectra, indicative of outer ejecta moving at very high velocity ($v geq 0.1 c$). SNe identified as BL in the early phase show large variations of core velocities at late phases, with some having much higher and some having similar velocities with respect to regular CC-SNe. This might indicate asphericity of the inner ejecta of BL-SNe, a possibility we investigate using synthetic three-dimensional nebular spectra.
In the current era of time-domain astronomy, it is increasingly important to have rigorous, data driven models for classifying transients, including supernovae. We present the first application of Principal Component Analysis to the spectra of stripp ed-envelope core-collapse supernovae. We use one of the largest compiled optical datasets of stripped-envelope supernovae, containing 160 SNe and 1551 spectra. We find that the first 5 principal components capture 79% of the variance of our spectral sample, which contains the main families of stripped supernovae: Ib, IIb, Ic and broad-lined Ic. We develop a quantitative, data-driven classification method using a support vector machine, and explore stripped-envelope supernovae classification as a function of phase relative to V-band maximum light. Our classification method naturally identifies transition supernovae and supernovae with contested labels, which we discuss in detail. We find that the stripped-envelope supernovae types are most distinguishable in the later phase ranges of $10pm5$ days and $15pm5$ days relative to V-band maximum, and we discuss the implications of our findings for current and future surveys such as ZTF and LSST.
We present observations of ZTF18abfcmjw (SN2019dge), a helium-rich supernova with a fast-evolving light curve indicating an extremely low ejecta mass ($approx 0.3,M_odot$) and low kinetic energy ($approx 1.2times 10^{50},{rm erg}$). Early-time (<4 d after explosion) photometry reveal evidence of shock cooling from an extended helium-rich envelope of $sim0.1,M_odot$ located at $sim 3times 10^{12},{rm cm}$ from the progenitor. Early-time He II line emission and subsequent spectra show signatures of interaction with helium-rich circumstellar material, which extends from $gtrsim 5times 10^{13},{rm cm}$ to $gtrsim 2times 10^{16},{rm cm}$. We interpret SN2019dge as a helium-rich supernova from an ultra-stripped progenitor, which originates from a close binary system consisting of a mass-losing helium star and a low-mass main sequence star or a compact object (i.e., a white dwarf, a neutron star, or a black hole). We infer that the local volumetric birth rate of 19dge-like ultra-stripped SNe is in the range of 1400--8200$,{rm Gpc^{-3}, yr^{-1}}$ (i.e., 2--12% of core-collapse supernova rate). This can be compared to the observed coalescence rate of compact neutron star binaries that are not formed by dynamical capture.
Supernova (SN) 2008ax in NGC 4490 was discovered within hours after shock breakout, presenting the rare opportunity to study a core-collapse SN beginning with the initial envelope-cooling phase immediately following shock breakout. We present an exte nsive sequence of optical and near-infrared spectra, as well as three epochs of optical spectropolarimetry. Our initial spectra, taken two days after shock breakout, are dominated by hydrogen Balmer lines at high velocity. However, by maximum light, He I lines dominated the optical and near-infrared spectra, which closely resembled those of normal Type Ib supernovae (SNe Ib) such as SN 1999ex. This spectroscopic transition defines Type IIb supernovae, but the strong similarity of SN 2008ax to normal SNe Ib beginning near maximum light, including an absorption feature near 6270A due to H-alpha at high velocities, suggests that many objects classified as SNe Ib in the literature may have ejected similar amounts of hydrogen as SN 2008ax, roughly a few x 0.01 M_sun. Early-time spectropolarimetry (6 and 9 days after shock breakout) revealed strong line polarization modulations of 3.4% across H-alpha, indicating the presence of large asphericities in the outer ejecta. The continuum shares a common polarization angle with the hydrogen, helium, and oxygen lines, while the calcium and iron absorptions are oriented at different angles. This is clear evidence of deviations from axisymmetry even in the outer ejecta. Intrinsic continuum polarization of 0.64% only nine days after shock breakout shows that the outer layers of the ejecta were quite aspherical. A single epoch of late-time spectropolarimetry, as well as the shapes of the nebular line profiles, demonstrate that asphericities extended from the outermost layers all the way down to the center of this SN. [Abridged]
We present 645 optical spectra of 73 supernovae (SNe) of Types IIb, Ib, Ic, and broad-lined Ic. All of these types are attributed to the core collapse of massive stars, with varying degrees of intact H and He envelopes before explosion. The SNe in ou r sample have a mean redshift <cz> = 4200 km/s. Most of these spectra were gathered at the Harvard-Smithsonian Center for Astrophysics (CfA) between 2004 and 2009. For 53 SNe, these are the first published spectra. The data coverage range from mere identification (1-3 spectra) for a few SNe to extensive series of observations (10-30 spectra) that trace the spectral evolution for others, with an average of 9 spectra per SN. For 44 SNe of the 73 SNe presented here, we have well-determined dates of maximum light to determine the phase of each spectrum. Our sample constitutes the most extensive spectral library of stripped-envelope SNe to date. We provide very early coverage (as early as 30 days before V-band max) for photospheric spectra, as well as late-time nebular coverage when the innermost regions of the SNe are visible (as late as 2 years after explosion, while for SN1993J, we have data as late as 11.6 years). This data set has homogeneous observations and reductions that allow us to study the spectroscopic diversity of these classes of stripped SNe and to compare these to SNe associated with gamma-ray bursts. We undertake these matters in follow-up papers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا