ترغب بنشر مسار تعليمي؟ اضغط هنا

Substitutional effects in TiFe for hydrogen storage: a comprehensive review

186   0   0.0 ( 0 )
 نشر من قبل Erika Michela Dematteis
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The search for suitable materials for solid-state stationary storage of green hydrogen is pushing the implementation of efficient renewable energy systems. This involves rational design and modification of cheap alloys for effective storage in mild conditions of temperature and pressure. Among many intermetallic compounds described in the literature, TiFe-based systems have recently regained vivid interest as materials for practical applications since they are low-cost and they can be tuned to match required pressure and operation conditions. This work aims to provide a comprehensive review of publications involving chemical substitution in TiFe-based compounds for guiding compound design and materials selection in current and future hydrogen storage applications. Mono- and multi-substituted compounds modify TiFe thermodynamics and are beneficial for many hydrogenation properties. They will be reviewed and deeply discussed, with a focus on manganese substitution.

قيم البحث

اقرأ أيضاً

TiFe intermetallic compound has been extensively studied, owing to its low cost, good volumetric hydrogen density, and easy tailoring of hydrogenation thermodynamics by elemental substitution. All these positive aspects make this material promising f or large-scale applications of solid-state hydrogen storage. On the other hand, activation and kinetic issues should be amended and the role of elemental substitution should be further understood. This work investigates the thermodynamic changes induced by the variation of Ti content along the homogeneity range of the TiFe phase (Ti:Fe ratio from 1:1 to 1:0.9) and of the substitution of Mn for Fe between 0 and 5 at.%. In all considered alloys, the major phase is TiFe-type together with minor amounts of TiFe2 or b{eta}-Ti-type and Ti4Fe2O-type at the Ti-poor and rich side of the TiFe phase domain, respectively. Thermodynamic data agree with the available literature but offer here a comprehensive picture of hydrogenation properties over an extended Ti and Mn compositional range. Moreover, it is demonstrated that Ti-rich alloys display enhanced storage capacities, as long as a limited amount of b{eta}-Ti is formed. Both Mn and Ti substitutions increase the cell parameter by possibly substituting Fe, lowering the plateau pressures and decreasing the hysteresis of the isotherms. A full picture of the dependence of hydrogen storage properties as a function of the composition will be discussed, together with some observed correlations.
Energy demands of modern society require efficient means of energy conversion and storage. Nanocarbons have been identified as versatile materials which combine many desirable properties, allowing them to be used in electrochemical power sources, fro m electrochemical capacitors to fuel cells. Efficient production of nanocarbons requires innovative and scalable approaches which allow for tuning of their physical and chemical properties. Carbonization of polymeric nanostructures has been demonstrated as a promising approach for production of high-performance nanocarbons with desired morphology and variable surface chemical properties. These materials have been successfully used as active electrode materials in electrochemical capacitors, as electrocatalysts or catalyst supports. Moreover, these materials are often found as parts of composite electrode materials where they play very important role in boosting materials performance. In this contribution we shall review developments in the field of application of polymer-derived nanocarbons for electrochemical energy conversion and storage applications, covering the last decade. Primary focus will be on polyaniline and polypyrrole but carbons derived from other polymers will also be mentioned. We shall emphasize the link between the physical and chemical properties of nanocarbons and their performance in electrochemical power sources with an attempt to derive general guidelines for further development of new materials with improved performances.
235 - D. Harrison , E. Welchman , 2017
The methane-based material (H$_2$)$_4$CH$_4$, also called H4M for short, is in essence a methane molecule with 4 physisorbed H$_2$ molecules. While H4M has exceptionally high hydrogen storage densities when it forms a molecular solid, unfortunately, this solid is only stable at impractically high pressures and/or low temperatures. To overcome this limitation, we show through simulations that longer alkanes (methane is the shortest alkane) also form stable structures that still physisorb 4 H$_2$ molecules per carbon atom; we call those structures H4-alkanes. We further show via molecular dynamics simulations that the stability field of molecular solids formed from H4-alkanes increases remarkably with chain length compared to H4M, just as it does for regular alkanes. From our simulations of H4-alkanes with lengths 1, 4, 10, and 20, we see that e.g. for the 20-carbon the stability field is doubled at higher pressures. While even longer chains show only insignificant improvements, we discuss various other options to stabilize H4-alkanes more. Our proof-of-principle results lay the groundwork to show that H4-alkanes can become viable hydrogen storage materials.
Using first principles calculations, we show the high hydrogen storage capacity of a new class of compounds, metalloboranes. Metalloboranes are transition metal (TM) and borane compounds that obey a novel-bonding scheme. We have found that the transition metal atoms can bind up to 10 H2 molecules.
We have performed cascade genetic algorithm and ab initio atomistic thermodynamics under the framework of first-principles density functional theory to study the (meta-)stability of a wide range of LixNy clusters. We found that hybrid xc-functional i s essential to address this problem as a local/semi-local functional simply fails even to predict a qualitative prediction. Most importantly, we find that though in bulk Lithium Nitride, Li rich phase, i.e. Li3N, is the stable stoichiometry, in small LixNy clusters N-rich phases are more stable at thermodynamic equilibrium. We further show a that these N-rich clusters are promising hydrogen storage material because of their easy adsorption and desorption ability at respectively low (< 300K) and moderately high temperature (> 600K).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا