ترغب بنشر مسار تعليمي؟ اضغط هنا

Fundamental hydrogen storage properties of TiFe-alloy with partial substitution of Fe by Ti and Mn

288   0   0.0 ( 0 )
 نشر من قبل Erika Michela Dematteis
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

TiFe intermetallic compound has been extensively studied, owing to its low cost, good volumetric hydrogen density, and easy tailoring of hydrogenation thermodynamics by elemental substitution. All these positive aspects make this material promising for large-scale applications of solid-state hydrogen storage. On the other hand, activation and kinetic issues should be amended and the role of elemental substitution should be further understood. This work investigates the thermodynamic changes induced by the variation of Ti content along the homogeneity range of the TiFe phase (Ti:Fe ratio from 1:1 to 1:0.9) and of the substitution of Mn for Fe between 0 and 5 at.%. In all considered alloys, the major phase is TiFe-type together with minor amounts of TiFe2 or b{eta}-Ti-type and Ti4Fe2O-type at the Ti-poor and rich side of the TiFe phase domain, respectively. Thermodynamic data agree with the available literature but offer here a comprehensive picture of hydrogenation properties over an extended Ti and Mn compositional range. Moreover, it is demonstrated that Ti-rich alloys display enhanced storage capacities, as long as a limited amount of b{eta}-Ti is formed. Both Mn and Ti substitutions increase the cell parameter by possibly substituting Fe, lowering the plateau pressures and decreasing the hysteresis of the isotherms. A full picture of the dependence of hydrogen storage properties as a function of the composition will be discussed, together with some observed correlations.

قيم البحث

اقرأ أيضاً

The present study investigates the partial substitutions of Mn and Cu for Fe in the TiFe-system to gain better understanding of the role of elemental substitution on its hydrogen storage properties. The TiFe0.88-xMn0.02Cux (x = 0, 0.02, 0.04) composi tions were studied. From X-Ray Diffraction (XRD) and Electron Probe Micro-Analysis (EPMA), it was found that all alloys are multi-phase, with TiFe as a major phase, together with b{eta}-Ti and Ti4Fe2O-type as secondary precipitates, of all them containing also Mn and Cu. Increasing the Cu content augments the secondary phase amounts. Low quantity of secondary phases helps the activation of the main TiFe phase for the first hydrogen absorption, but on increasing their amounts, harsher activation occurs. Both Mn and Cu substitutions increase the cell parameter of TiFe, thus decreasing the first plateau pressure. However, Cu substitution rises the second plateau pressure revealing the predominancy of electronic effects associated to this substitution. All samples have fast kinetics and high hydrogen capacity making these substituted compounds promising for large scale stationary applications.
The search for suitable materials for solid-state stationary storage of green hydrogen is pushing the implementation of efficient renewable energy systems. This involves rational design and modification of cheap alloys for effective storage in mild c onditions of temperature and pressure. Among many intermetallic compounds described in the literature, TiFe-based systems have recently regained vivid interest as materials for practical applications since they are low-cost and they can be tuned to match required pressure and operation conditions. This work aims to provide a comprehensive review of publications involving chemical substitution in TiFe-based compounds for guiding compound design and materials selection in current and future hydrogen storage applications. Mono- and multi-substituted compounds modify TiFe thermodynamics and are beneficial for many hydrogenation properties. They will be reviewed and deeply discussed, with a focus on manganese substitution.
Experimental investigation as well as theoretical calculations, of the Fe-partial phonon density-of-states (DOS) for nominally Fe_52.5Cr_47.5 alloy having (a) alpha- and (b) sigma-phase structure were carried out. The former at sector 3-ID of the Adv anced Photon Source, using the method of nuclear resonant inelastic X-ray scattering, and the latter with the direct method [K. Parlinski et al., Phys. Rev. Lett. {78, 4063 (1997)]. The characteristic features of phonon DOS, which differentiate one phase from the other, were revealed and successfully reproduced by the theory. Various data pertinent to the dynamics such as Lamb-Mossbauer factor, f, kinetic energy per atom, E_k, and the mean force constant, D, were directly derived from the experiment and the theoretical calculations, while vibrational specific heat at constant volume, C_V, and vibrational entropy, S were calculated using the Fe-partial DOS. Using the values of f and C_V, we determined values for Debye temperatures, T_D. An excellent agreement for some quantities derived from experiment and first-principles theory, like C_V and quite good one for others like D and S was obtained.
Mg-Ti alloys have uncommon optical and hydrogen absorbing properties, originating from a spinodal-like microstructure with a small degree of chemical short-range order in the atoms distribution. In the present study we artificially engineer short-ran ge order by depositing Pd-capped Mg/Ti multilayers with different periodicities and characterize them both structurally and optically. Notwithstanding the large lattice parameter mismatch between Mg and Ti, the as-deposited metallic multilayers show good structural coherence. Upon exposure to H2 gas a two-step hydrogenation process occurs, with the Ti layers forming the hydride before Mg. From in-situ measurements of the bilayer thickness L at different hydrogen pressures, we observe large out-of-plane expansions of the Mg and Ti layers upon hydrogenation, indicating strong plastic deformations in the films and a consequent shortening of the coherence length. Upon unloading at room temperature in air, hydrogen atoms remain trapped in the Ti layers due to kinetic constraints. Such loading/unloading sequence can be explained in terms of the different thermodynamic properties of hydrogen in Mg and Ti, as shown by diffusion calculations on a model multilayered systems. Absorption isotherms measured by hydrogenography can be interpreted as a result of the elastic clamping arising from strongly bonded Mg/Pd and broken Mg/Ti interfaces.
Stress-induced martensitic transformations enable metastable alloys to exhibit enhanced strain hardening capacity, leading to improved formability and toughness. As is well-known from transformation-induced plasticity (TRIP) steels, however, the resu lting martensite can limit ductility and fatigue life due to its intrinsic brittleness. In this work, we explore an alloy design strategy that utilizes stress-induced martensitic transformations but does not retain the martensite phase. This strategy is based on the introduction of superelastic nano-precipitates, which exhibit reverse transformation after initial stress-induced forward transformation. To this end, utilizing ab-initio simulations and thermodynamic calculations we designed and produced a V45Ti30Ni25 (at%) alloy. In this alloy, TiNi is present as nano-precipitates uniformly distributed within a ductile V-rich base-centered cubic (bcc) beta matrix, as well as being present as a larger matrix phase. We characterized the microstructure of the produced alloy using various scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. The bulk mechanical properties of the alloy are demonstrated through tensile tests, and the reversible transformation in each of the TiNi morphologies were confirmed by in-situ TEM micro-pillar compression experiments, in-situ high-energy diffraction synchrotron cyclic tensile tests, indentation experiments, and differential scanning calorimetry experiments. The observed transformation pathways and variables impacting phase stability are critically discussed
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا