ﻻ يوجد ملخص باللغة العربية
The methane-based material (H$_2$)$_4$CH$_4$, also called H4M for short, is in essence a methane molecule with 4 physisorbed H$_2$ molecules. While H4M has exceptionally high hydrogen storage densities when it forms a molecular solid, unfortunately, this solid is only stable at impractically high pressures and/or low temperatures. To overcome this limitation, we show through simulations that longer alkanes (methane is the shortest alkane) also form stable structures that still physisorb 4 H$_2$ molecules per carbon atom; we call those structures H4-alkanes. We further show via molecular dynamics simulations that the stability field of molecular solids formed from H4-alkanes increases remarkably with chain length compared to H4M, just as it does for regular alkanes. From our simulations of H4-alkanes with lengths 1, 4, 10, and 20, we see that e.g. for the 20-carbon the stability field is doubled at higher pressures. While even longer chains show only insignificant improvements, we discuss various other options to stabilize H4-alkanes more. Our proof-of-principle results lay the groundwork to show that H4-alkanes can become viable hydrogen storage materials.
Exploring new two-dimensional (2D) van der Waals (vdW) systems is at the forefront of materials physics. Here, through molecular beam epitaxy on graphene-covered SiC(0001), we report successful growth of AlSb in the double-layer honeycomb (DLHC) stru
The search for suitable materials for solid-state stationary storage of green hydrogen is pushing the implementation of efficient renewable energy systems. This involves rational design and modification of cheap alloys for effective storage in mild c
Based on density functional calculations, we propose that ZrMn_2 is a polymorphic material. We predict that at low temperatures the cubic C15, and the hexagonal C14 and C36 structures of the Laves phase compound ZrMn_2 are nearly equally stable withi
Using density functional theory we show that an applied electric field substantially improves the hydrogen storage properties of a BN sheet by polarizing the hydrogen molecules as well as the substrate. The adsorption energy of a single H2 molecule i
Using first principles calculations, we show the high hydrogen storage capacity of a new class of compounds, metalloboranes. Metalloboranes are transition metal (TM) and borane compounds that obey a novel-bonding scheme. We have found that the transition metal atoms can bind up to 10 H2 molecules.