ﻻ يوجد ملخص باللغة العربية
Recent works have proposed new Byzantine consensus algorithms for blockchains based on epidemics, a design which enables highly scalable performance at a low cost. These methods however critically depend on a secure random peer sampling service: a service that provides a stream of random network nodes where no attacking entity can become over-represented. To ensure this security property, current epidemic platforms use a Proof-of-Stake system to select peer samples. However such a system limits the openness of the system as only nodes with significant stake can participate in the consensus, leading to an oligopoly situation. Moreover, this design introduces a complex interdependency between the consensus algorithm and the cryptocurrency built upon it. In this paper, we propose a radically different security design for the peer sampling service, based on the distribution of IP addresses to prevent Sybil attacks. We propose a new algorithm, $scriptstyle{BASALT}$, that implements our design using a stubborn chaotic search to counter attackers attempts at becoming over-represented. We show in theory and using Monte Carlo simulations that $scriptstyle{BASALT}$ provides samples which are extremely close to the optimal distribution even in adversarial scenarios such as tentative Eclipse attacks. Live experiments on a production cryptocurrency platform confirm that the samples obtained using $scriptstyle{BASALT}$ are equitably distributed amongst nodes, allowing for a system which is both open and where no single entity can gain excessive power.
In the field of database deduplication, the goal is to find approximately matching records within a database. Blocking is a typical stage in this process that involves cheaply finding candidate pairs of records that are potential matches for further
Blockchain-based cryptocurrencies received a lot of attention recently for their applications in many domains. IoT domain is one of such applications, which can utilize cryptocur-rencies for micro payments without compromising their payment privacy.
Radio Access Networks (RAN) tends to be more distributed in the 5G and beyond, in order to provide low latency and flexible on-demanding services. In this paper, Blockchain-enabled Radio Access Networks (BE-RAN) is proposed as a novel decentralized R
Epidemic situations typically demand intensive data collection and management from different locations/entities within a strict time constraint. Such demand can be fulfilled by leveraging the intensive and easy deployment of the Internet of Things (I
In this proceeding, we summarize the key science goals and reference design for a next-generation Very Large Array (ngVLA) that is envisaged to operate in the 2030s. The ngVLA is an interferometric array with more than 10 times the sensitivity and sp