ﻻ يوجد ملخص باللغة العربية
Epidemic situations typically demand intensive data collection and management from different locations/entities within a strict time constraint. Such demand can be fulfilled by leveraging the intensive and easy deployment of the Internet of Things (IoT) devices. The management and containment of such situations also rely on cross-organizational and national collaboration. Thus, this paper proposes an Intelligent-Health (I-Health) system that aims to aggregate diverse e-health entities in a unique national healthcare system by enabling swift, secure exchange and storage of medical data. In particular, we design an automated patients monitoring scheme, at the edge, which enables the prompt discovery, remote monitoring, and fast emergency response for critical medical events, such as emerging epidemics. Furthermore, we develop a blockchain optimization model that aims to optimize medical data sharing between different health entities to provide effective and secure health services. Finally, we show the effectiveness of our system, in adapting to different critical events, while highlighting the benefits of the proposed I-Health system.
Blockchain-enabled Federated Learning (BFL) enables mobile devices to collaboratively train neural network models required by a Machine Learning Model Owner (MLMO) while keeping data on the mobile devices. Then, the model updates are stored in the bl
Radio Access Networks (RAN) tends to be more distributed in the 5G and beyond, in order to provide low latency and flexible on-demanding services. In this paper, Blockchain-enabled Radio Access Networks (BE-RAN) is proposed as a novel decentralized R
Advances in deep neural networks (DNN) greatly bolster real-time detection of anomalous IoT data. However, IoT devices can hardly afford complex DNN models, and offloading anomaly detection tasks to the cloud incurs long delay. In this paper, we prop
The salient features of blockchain, such as decentralisation and transparency, have allowed the development of Decentralised Trust and Reputation Management Systems (DTRMS), which mainly aim to quantitatively assess the trustworthiness of the network
We argue that there is a hierarchy of levels describing to that particular level relevant features of reality behind the content and behavior of blockchain and smart contracts in their realistic deployment. Choice, design, audit and legal control o