ﻻ يوجد ملخص باللغة العربية
Radio Access Networks (RAN) tends to be more distributed in the 5G and beyond, in order to provide low latency and flexible on-demanding services. In this paper, Blockchain-enabled Radio Access Networks (BE-RAN) is proposed as a novel decentralized RAN architecture to facilitate enhanced security and privacy on identification and authentication. It can offer user-centric identity management for User Equipment (UE) and RAN elements, and enable mutual authentication to all entities while enabling on-demand point-to-point communication with accountable billing service add-on on public network. Also, a potential operating model with thorough decentralization of RAN is envisioned. The paper also proposed a distributed privacy-preserving P2P communication approach, as one of the core use cases for future mobile networks, is presented as an essential complement to the existing core network-based security and privacy management. The results show that BE-RAN significantly improves communication and computation overheads compared to the existing communication authentication protocols.
Activity-tracking applications and location-based services using short-range communication (SRC) techniques have been abruptly demanded in the COVID-19 pandemic, especially for automated contact tracing. The attention from both public and policy keep
Advancement in artificial intelligence (AI) and machine learning (ML), dynamic data driven application systems (DDDAS), and hierarchical cloud-fog-edge computing paradigm provide opportunities for enhancing multi-domain systems performance. As one ex
Blockchain-enabled Federated Learning (BFL) enables mobile devices to collaboratively train neural network models required by a Machine Learning Model Owner (MLMO) while keeping data on the mobile devices. Then, the model updates are stored in the bl
Artificial intelligence (AI) will play an increasing role in cellular network deployment, configuration and management. This paper examines the security implications of AI-driven 6G radio access networks (RANs). While the expected timeline for 6G sta
This document describes and analyzes a system for secure and privacy-preserving proximity tracing at large scale. This system, referred to as DP3T, provides a technological foundation to help slow the spread of SARS-CoV-2 by simplifying and accelerat