ﻻ يوجد ملخص باللغة العربية
Since its launch, the Alpha Magnetic Spectrometer - 02 (AMS-02) has delivered outstanding quality measurements of the spectra of cosmic-ray (CR) species, $bar{p}$, $e^{pm}$, and nuclei, $_1$H-$_8$O, $_{10}$Ne, $_{12}$Mg, $_{14}$Si, which resulted in a number of breakthroughs. One of the latest long awaited surprises is the spectrum of $_{26}$Fe just published by AMS-02. Because of the large fragmentation cross section and large ionization energy losses, most of CR iron at low energies is local, and may harbor some features associated with relatively recent supernova (SN) activity in the solar neighborhood. Our analysis of new iron spectrum together with Voyager 1 and ACE-CRIS data reveals an unexpected bump in the iron spectrum and in the Fe/He, Fe/O, and Fe/Si ratios at 1-2 GV, while a similar feature in the spectra of He, O, Si, and in their ratios is absent, hinting at a local source of low-energy CRs. The found excess fits well with recent discoveries of radioactive $^{60}$Fe deposits in terrestrial and lunar samples, and in CRs. We provide an updated local interstellar spectrum (LIS) of iron in the energy range from 1 MeV nucleon$^{-1}$ to $sim$10 TeV nucleon$^{-1}$. Our calculations employ the GalProp-HelMod framework that is proved to be a reliable tool in deriving the LIS of CR $bar{p}$, $e^{-}$, and nuclei $Zle28$.
Since its launch, the Alpha Magnetic Spectrometer-02 (AMS-02) has delivered outstanding quality measurements of the spectra of cosmic-ray (CR) species, $bar{p}$, $e^{pm}$, and nuclei (H-O, Ne, Mg, Si, Fe), which resulted in a number of breakthroughs.
Cosmic ray electrons and positrons are tracers of particle propagation in the interstellar medium (ISM). A recent measurement performed using H.E.S.S. extends the all-electron (electron+positron) spectrum up to 20TeV, probing very local sources and t
We report the analysis of the Fermi-Large Area Telescope data from six nearby giant molecular clouds (MCs) belonging to the Gould Belt and the Aquila Rift regions. The high statistical {gamma}-ray spectra above 3 GeV well described by power laws make
The ultrahigh-energy cosmic-ray anisotropies discovered by the Pierre Auger Observatory give the potential to finally address both the particles origins and properties of the nearby extragalactic magnetic field (EGMF). We examine the implications of
We report Suzaku results for soft X-ray emission to the south of the Galactic center (GC). The emission (hereafter GC South) has an angular size of ~42 x 16 centered at (l, b) ~ (0.0, -1.4), and is located in the largely extended Galactic ridge X-ray