ترغب بنشر مسار تعليمي؟ اضغط هنا

Undiscovered pulsar in the Local Bubble as an explanation of the local high energy cosmic ray all-electron spectrum

81   0   0.0 ( 0 )
 نشر من قبل Rub\\'en L\\'opez-Coto
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cosmic ray electrons and positrons are tracers of particle propagation in the interstellar medium (ISM). A recent measurement performed using H.E.S.S. extends the all-electron (electron+positron) spectrum up to 20TeV, probing very local sources and transport due to the $sim$10~kyr cooling time of these particles. An additional key local measurement was the recent estimation of the ISM diffusion coefficient around Geminga performed using HAWC. The inferred diffusion coefficient is much lower than typically assumed values. It has been argued that if this diffusion coefficient is representative of the local ISM, pulsars would not be able to account for the all-electron spectrum measured at the Earth. Here we show that a low diffusion coefficient in the local ISM is compatible with a pulsar wind nebula origin of the highest energy electrons, if a so far undiscovered pulsar with spin-down power $sim 10^{33-34}$ erg/s exists within 30 to 80~pc of the Earth. The existence of such a pulsar is broadly consistent with the known population and may be detected in near future survey observations.



قيم البحث

اقرأ أيضاً

Since its launch, the Alpha Magnetic Spectrometer - 02 (AMS-02) has delivered outstanding quality measurements of the spectra of cosmic-ray (CR) species, $bar{p}$, $e^{pm}$, and nuclei, $_1$H-$_8$O, $_{10}$Ne, $_{12}$Mg, $_{14}$Si, which resulted in a number of breakthroughs. One of the latest long awaited surprises is the spectrum of $_{26}$Fe just published by AMS-02. Because of the large fragmentation cross section and large ionization energy losses, most of CR iron at low energies is local, and may harbor some features associated with relatively recent supernova (SN) activity in the solar neighborhood. Our analysis of new iron spectrum together with Voyager 1 and ACE-CRIS data reveals an unexpected bump in the iron spectrum and in the Fe/He, Fe/O, and Fe/Si ratios at 1-2 GV, while a similar feature in the spectra of He, O, Si, and in their ratios is absent, hinting at a local source of low-energy CRs. The found excess fits well with recent discoveries of radioactive $^{60}$Fe deposits in terrestrial and lunar samples, and in CRs. We provide an updated local interstellar spectrum (LIS) of iron in the energy range from 1 MeV nucleon$^{-1}$ to $sim$10 TeV nucleon$^{-1}$. Our calculations employ the GalProp-HelMod framework that is proved to be a reliable tool in deriving the LIS of CR $bar{p}$, $e^{-}$, and nuclei $Zle28$.
Thanks to recent technological development, a new generation of cosmic ray experiments have been developed with more sensitivity to study these particles in the primary energy interval from 10 TeV to 1 PeV, such as HAWC. Due to its design and high al titude, the HAWC gamma-ray and cosmic ray observatory can provide a bridge between the data from direct and indirect cosmic ray detectors. In 2017 the HAWC collaboration published its first result on the total energy spectrum of cosmic rays, which covers the range from 10 to 500 TeV. This work updates the previous result by extending the energy interval of the measured all-particle cosmic-ray energy spectrum up to 1 PeV. The energy spectrum was obtained from the analysis of two years of HAWCs data using an unfolding method. We employed the QGSJET-II-04 model for the energy calibration and the spectrum reconstruction. The results confirm the presence of a knee like feature at tens of TeV, as previously reported by the HAWC collaboration in 2017.
96 - Philipp Mertsch 2018
Despite significant progress over more than 100 years, no accelerator has been unambiguously identified as the source of the locally measured flux of cosmic rays. High-energy electrons and positrons are of particular importance in the search for near by sources as radiative energy losses constrain their propagation to distances of about 1 kpc around 1 TeV. At the highest energies, the spectrum is therefore dominated and shaped by only a few sources whose properties can be inferred from the fine structure of the spectrum at energies currently accessed by experiments like AMS-02, CALET, DAMPE, Fermi-LAT, H.E.S.S. and ISS-CREAM. We present a stochastic model of the Galactic all-electron flux and evaluate its compatibility with the measurement recently presented by the H.E.S.S. collaboration. To this end, we have MC generated a large sample of the all-electron flux from an ensemble of random distributions of sources. We confirm the non-Gaussian nature of the probability density of fluxes at individual energies previously reported in analytical computations. For the first time, we also consider the correlations between the fluxes at different energies, treating the binned spectrum as a random vector and parametrising its joint distribution with the help of a pair-copula construction. We show that the spectral break observed in the all-electron spectrum by H.E.S.S. and DAMPE is statistically compatible with a distribution of astrophysical sources like supernova remnants or pulsars, but requires a rate smaller than the canonical supernova rate. This important result provides an astrophysical interpretation of the spectrum at TeV energies and allows differentiating astrophysical source models from exotic explanations, like dark matter annihilation. We also critically assess the reliability of using catalogues of known sources to model the electron-positron flux.
The positron excess measured by PAMELA and AMS can only be explained if there is one or several sources injecting them. Moreover, at the highest energies, it requires the presence of nearby ($sim$hundreds of parsecs) and middle age (maximum of $sim$h undreds of kyr) sources. Pulsars, as factories of electrons and positrons, are one of the proposed candidates to explain the origin of this excess. To calculate the contribution of these sources to the electron and positron flux at the Earth, we developed EDGE (Electron Diffusion and Gamma rays to the Earth), a code to treat the propagation of electrons and compute their diffusion from a central source with a flexible injection spectrum. Using this code, we can derive the sources gamma-ray spectrum, spatial extension, the all-electron density in space, the electron and positron flux reaching the Earth and the positron fraction measured at the Earth. We present in this paper the foundations of the code and study how different parameters affect the gamma-ray spectrum of a source and the electron flux measured at the Earth. We also studied the effect of several approximations usually performed in these studies.
117 - W. Liu , M. Chiao , M. R. Collier 2016
DXL (Diffuse X-rays from the Local Galaxy) is a sounding rocket mission designed to quantify and characterize the contribution of Solar Wind Charge eXchange (SWCX) to the Diffuse X-ray Background and study the properties of the Local Hot Bubble (LHB) . Based on the results from the DXL mission, we quantified and removed the contribution of SWCX to the diffuse X-ray background measured by the ROSAT All Sky Survey (RASS). The cleaned maps were used to investigate the physical properties of the LHB. Assuming thermal ionization equilibrium, we measured a highly uniform temperature distributed around kT=0.097 keV+/-0.013 keV (FWHM)+/-0.006 keV (systematic). We also generated a thermal emission measure map and used it to characterize the three-dimensional (3D) structure of the LHB which we found to be in good agreement with the structure of the local cavity measured from dust and gas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا