ﻻ يوجد ملخص باللغة العربية
To measure the similarity of documents, the Wasserstein distance is a powerful tool, but it requires a high computational cost. Recently, for fast computation of the Wasserstein distance, methods for approximating the Wasserstein distance using a tree metric have been proposed. These tree-based methods allow fast comparisons of a large number of documents; however, they are unsupervised and do not learn task-specific distances. In this work, we propose the Supervised Tree-Wasserstein (STW) distance, a fast, supervised metric learning method based on the tree metric. Specifically, we rewrite the Wasserstein distance on the tree metric by the parent-child relationships of a tree and formulate it as a continuous optimization problem using a contrastive loss. Experimentally, we show that the STW distance can be computed fast, and improves the accuracy of document classification tasks. Furthermore, the STW distance is formulated by matrix multiplications, runs on a GPU, and is suitable for batch processing. Therefore, we show that the STW distance is extremely efficient when comparing a large number of documents.
Developing machine learning methods that are privacy preserving is today a central topic of research, with huge practical impacts. Among the numerous ways to address privacy-preserving learning, we here take the perspective of computing the divergenc
Wasserstein GANs (WGANs), built upon the Kantorovich-Rubinstein (KR) duality of Wasserstein distance, is one of the most theoretically sound GAN models. However, in practice it does not always outperform other variants of GANs. This is mostly due to
The Wasserstein probability metric has received much attention from the machine learning community. Unlike the Kullback-Leibler divergence, which strictly measures change in probability, the Wasserstein metric reflects the underlying geometry between
Projection robust Wasserstein (PRW) distance, or Wasserstein projection pursuit (WPP), is a robust variant of the Wasserstein distance. Recent work suggests that this quantity is more robust than the standard Wasserstein distance, in particular when
Many information retrieval algorithms rely on the notion of a good distance that allows to efficiently compare objects of different nature. Recently, a new promising metric called Word Movers Distance was proposed to measure the divergence between te