ﻻ يوجد ملخص باللغة العربية
Projection robust Wasserstein (PRW) distance, or Wasserstein projection pursuit (WPP), is a robust variant of the Wasserstein distance. Recent work suggests that this quantity is more robust than the standard Wasserstein distance, in particular when comparing probability measures in high-dimensions. However, it is ruled out for practical application because the optimization model is essentially non-convex and non-smooth which makes the computation intractable. Our contribution in this paper is to revisit the original motivation behind WPP/PRW, but take the hard route of showing that, despite its non-convexity and lack of nonsmoothness, and even despite some hardness results proved by~citet{Niles-2019-Estimation} in a minimax sense, the original formulation for PRW/WPP textit{can} be efficiently computed in practice using Riemannian optimization, yielding in relevant cases better behavior than its convex relaxation. More specifically, we provide three simple algorithms with solid theoretical guarantee on their complexity bound (one in the appendix), and demonstrate their effectiveness and efficiency by conducing extensive experiments on synthetic and real data. This paper provides a first step into a computational theory of the PRW distance and provides the links between optimal transport and Riemannian optimization.
We propose a distributionally robust classification model with a fairness constraint that encourages the classifier to be fair in view of the equality of opportunity criterion. We use a type-$infty$ Wasserstein ambiguity set centered at the empirical
Motivated by the problem of learning a linear regression model whose parameter is a large fixed-rank non-symmetric matrix, we consider the optimization of a smooth cost function defined on the set of fixed-rank matrices. We adopt the geometric framew
Inverse multiobjective optimization provides a general framework for the unsupervised learning task of inferring parameters of a multiobjective decision making problem (DMP), based on a set of observed decisions from the human expert. However, the pe
Distributionally robust supervised learning (DRSL) is emerging as a key paradigm for building reliable machine learning systems for real-world applications -- reflecting the need for classifiers and predictive models that are robust to the distributi
Given restrictions on the availability of data, active learning is the process of training a model with limited labeled data by selecting a core subset of an unlabeled data pool to label. Although selecting the most useful points for training is an o