ترغب بنشر مسار تعليمي؟ اضغط هنا

System size dependence of baryon-strangeness correlations in relativistic heavy ion collisions from a multiphase transport model

66   0   0.0 ( 0 )
 نشر من قبل Yu-Gang Ma
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The system size dependence of baryon-strangeness (BS) correlations ($C_{BS}$) are investigated with a multiphase transport (AMPT) model for various collision systems from $mathrm{^{10}B+^{10}B}$, $mathrm{^{12}C+^{12}C}$, $mathrm{^{16}O+^{16}O}$, $mathrm{^{20}Ne+^{20}Ne}$, $mathrm{^{40}Ca+^{40}Ca}$, $mathrm{^{96}Zr+^{96}Zr}$, and $mathrm{^{197}Au+^{197}Au}$ at RHIC energies $sqrt{s_{NN}}$ of 200, 39, 27, 20, and 7.7 GeV. Both effects of hadron rescattering and a combination of different hadrons play a leading role for baryon-strangeness correlations. When the kinetic window is limited to absolute rapidity $|y|>3$, these correlations tend to be constant after the final-state interaction whatever kind of hadrons subset we chose based on the AMPT framework. The correlation is found to smoothly increase with baryon chemical potential $mu_B$, corresponding to the collision system or energy from the quark-gluon-plasma-like phase to the hadron-gas-like phase. Besides, the influence of initial nuclear geometrical structures of $alpha$-clustered nuclear collision systems of $mathrm{^{12}C+^{12}C}$ as well as $mathrm{^{16}O+^{16}O}$ collisions is discussed but the effect is found negligible. The current model studies provide baselines for searching for the signals of Quantum Chromodynamics (QCD) phase transition and critical point in heavy-ion collisions through the BS correlation.

قيم البحث

اقرأ أيضاً

The dynamics of baryon-antibaryon annihilation and reproduction ($B{bar B} leftrightarrow 3 M$) is studied within the Parton-Hadron-String Dynamics (PHSD) transport approach for Pb+Pb and Au+Au collisions as a function of centrality from lower Super Proton Synchrotron (SPS) up to Large Hadron Collider (LHC) energies on the basis of the quark rearrangement model (QRM). At Relativistic Heavy-Ion Collider (RHIC) energies we find a small net reduction of baryon-antibaryon ($B {bar B}$) pairs while for the LHC energy of $sqrt{s_{NN}}$ = 2.76 GeV a small net enhancement is found relative to calculations without annihilation (and reproduction) channels. Accordingly, the sizeable difference between data and statistical calculations in Pb+Pb collisions at $sqrt{s_{NN}}$= 2.76 TeV for proton and antiproton yields cite{53}, where a deviation of 2.7 $sigma$ was claimed by the ALICE Collaboration, should not be attributed to a net antiproton annihilation. This is in line with the observation that no substantial deviation between the data and statistical hadronization model (SHM) calculations is seen for antihyperons, since according to the PHSD analysis the antihyperons should be modified by the same amount as antiprotons. As the PHSD results for particle ratios are in line with the ALICE data (within error bars) this might point towards a deviation from statistical equilibrium in the hadronization (at least for protons/antiprotons). Furthermore, we find that the $B {bar B} leftrightarrow 3 M$ reactions are more effective at lower SPS energies where a net suppression for antiprotons and antihyperons up to a factor of 2 -- 2.5 can be extracted from the PHSD calculations for central Au+Au collisions.
A study of the horn in the particle ratio $K^+/pi^+$ for central heavy-ion collisions as a function of the collision energy $sqrt{s}$ is presented. We analyse two different interpretations: the onset of deconfinement and the transition from a baryon- to a meson-dominated hadron gas. We use a realistic equation of state (EOS), which includes both hadron and quark degrees-of-freedom. The Taub-adiabate procedure is followed to determine the system at the early stage. Our results do not support an explanation of the horn as due to the onset of deconfinement. Using only hadronic EOS we reproduced the energy dependence of the $K^+/pi^+$ and $Lambda/pi^-$ ratios employing an experimental parametrisation of the freeze-out curve. We observe a transition between a baryon- and a meson-dominated regime; however, the reproduction of the $K^+/pi^+$ and $Lambda/pi^-$ ratios as a function of $sqrt{s}$ is not completely satisfying. We finally propose a new idea for the interpretation of the data, the roll-over scheme, in which the scalar meson field $sigma$ has not reached the thermal equilibrium at freeze-out. The rool-over scheme for the equilibration of the $sigma$-field is based on the inflation mechanism. The non-equilibrium evolution of the scalar field influences the particle production, e.g. $K^+/pi^+$, however, the fixing of the free parameters in this model is still an open issue.
The strong suppression of high-$p_T$ jets in heavy ion collisions is a result of elastic and inelastic energy loss suffered by the jet multi-prong collection of color charges that are resolved by medium interactions. Hence, quenching effects depend o n the fluctuations of the jet substructure that are probed by the cone size dependence of the spectrum. In this letter, we present the first complete, analytic calculation of the inclusive $R$-dependent jet spectrum in PbPb collisions at LHC energies, including resummation of energy loss effects from hard, vacuum-like emissions occurring in the medium and modeling of soft energy flow and recovery at the jet cone. Both the geometry of the collision and the local medium properties, such as the temperature and fluid velocity, are given by a hydrodynamic evolution of the medium, leaving only the coupling constant in the medium as a free parameter. The calculation yields a good description of the centrality and $p_T$ dependence of jet suppression for $R=0.4$ together with a mild cone size dependence, which is in agreement with recent experimental results. Gauging the theoretical uncertainties, we find that the largest sensitivity resides in the leading logarithmic approximation of the phase space of resolved splittings, which can be improved systematically, while non-perturbative modeling of the soft-gluon sector is of relatively minor importance up to large cone sizes.
109 - E. Seifert , W. Cassing 2017
The quark rearrangement model for baryon-antibaryon annihilation and reproduction ($Bbar Bleftrightarrow 3M$) - incorporated in the Parton-Hadron-String Dynamics (PHSD) transport approach - is extended to the strangeness sector. A derivation of the t ransition probabilities for the three-body processes is presented and a strangeness suppression factor for the invariant matrix element squared is introduced to account for the higher mass of the strange quark compared to the light up and down quarks. In simulations of the baryon-antibaryon annihilation and reformation in a box with periodic boundary conditions we demonstrate that our numerical implementation fulfills detailed balance on a channel-by-channel basis for more than 2000 individual $2 leftrightarrow 3$ channels. Furthermore, we study central Pb+Pb collisions within PHSD from 11.7$A$ GeV to 158$A$ GeV and investigate the impact of the additionally implemented reaction channels in the strangeness sector. We find that the new reaction channels have a visible impact essentially only on the rapidity spectra of antibaryons. The spectra with the additional channels in the strangeness sector are closer to the experimental data than without for all antihyperons. Due to the chemical redistribution between baryons/antibaryons and mesons we find a slightly larger production of antiprotons thus moderately overestimating the available experimental data. We additionally address the question if the antibaryon spectra (with strangeness) from central heavy-ion reactions at these energies provide further information on the issue of chiral symmetry restoration and deconfinement. However, by comparing transport results with/without partonic phase as well as including/excluding effects from chiral symmetry restoration we find no convincing signals in the strange antibaryon sector for either transition due to the strong final-state interactions.
Using the string melting version of a multiphase transport (AMPT) model, we focus on the evolution of thermodynamic properties of the central cell of parton matter produced in Au+Au collisions ranging from 200 GeV down to 2.7 GeV. The temperature and baryon chemical potential are calculated for Au+Au collisions at different energies to locate their evolution trajectories in the QCD phase diagram. The evolution of pressure anisotropy indicates that only partial thermalization can be achieved, especially at lower energies. Through event-by-event temperature fluctuations, we present the specific heat of the partonic matter as a function of temperature and baryon chemical potential that is related to the partonic matters approach to equilibrium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا