ﻻ يوجد ملخص باللغة العربية
Using the string melting version of a multiphase transport (AMPT) model, we focus on the evolution of thermodynamic properties of the central cell of parton matter produced in Au+Au collisions ranging from 200 GeV down to 2.7 GeV. The temperature and baryon chemical potential are calculated for Au+Au collisions at different energies to locate their evolution trajectories in the QCD phase diagram. The evolution of pressure anisotropy indicates that only partial thermalization can be achieved, especially at lower energies. Through event-by-event temperature fluctuations, we present the specific heat of the partonic matter as a function of temperature and baryon chemical potential that is related to the partonic matters approach to equilibrium.
A key ingredient of hydrodynamical modeling of relativistic heavy ion collisions is thermal initial conditions, an input that is the consequence of a pre-thermal dynamics which is not completely understood yet. In the paper we employ a recently devel
We investigate the two-particle intensity correlation function of $Lambda$ in relativistic heavy-ion collisions. We find that the behavior of the $LambdaLambda$ correlation function at small relative momenta is fairly sensitive to the interaction pot
Based on the Kharzeev-McLerran-Warringa (KMW) model that estimates strong electromagnetic (EM) fields generated in relativistic heavy-ion collisions, we generalize the formulas of EM fields in the vacuum by incorporating the longitudinal position dep
The direct photon spectra and flow ($v_2$, $v_3$) in heavy-ion collisions at SPS, RHIC and LHC energies are investigated within a relativistic transport approach incorporating both hadronic and partonic phases -- the Parton-Hadron-String Dynamics (PH
The LHC data on azimuthal anisotropy harmonics from PbPb collisions at center-of-mass energy 2.76 TeV per nucleon pair are analyzed and interpreted in the framework of the HYDJET++ model. The cross-talk of elliptic $v_2$ and triangular $v_3$ flow in