ﻻ يوجد ملخص باللغة العربية
The strong suppression of high-$p_T$ jets in heavy ion collisions is a result of elastic and inelastic energy loss suffered by the jet multi-prong collection of color charges that are resolved by medium interactions. Hence, quenching effects depend on the fluctuations of the jet substructure that are probed by the cone size dependence of the spectrum. In this letter, we present the first complete, analytic calculation of the inclusive $R$-dependent jet spectrum in PbPb collisions at LHC energies, including resummation of energy loss effects from hard, vacuum-like emissions occurring in the medium and modeling of soft energy flow and recovery at the jet cone. Both the geometry of the collision and the local medium properties, such as the temperature and fluid velocity, are given by a hydrodynamic evolution of the medium, leaving only the coupling constant in the medium as a free parameter. The calculation yields a good description of the centrality and $p_T$ dependence of jet suppression for $R=0.4$ together with a mild cone size dependence, which is in agreement with recent experimental results. Gauging the theoretical uncertainties, we find that the largest sensitivity resides in the leading logarithmic approximation of the phase space of resolved splittings, which can be improved systematically, while non-perturbative modeling of the soft-gluon sector is of relatively minor importance up to large cone sizes.
Jets in the vacuum correspond to multi-parton configurations that form via a branching process sensitive to the soft and collinear divergences of QCD. In heavy-ion collisions, energy loss processes that are stimulated via interactions with the medium
We review recent theoretical developments in the study of the structure of jets that are produced in ultra relativistic heavy ion collisions. The core of the review focusses on the dynamics of the parton cascade that is induced by the interactions of
Transverse momentum broadening and energy loss of a propagating parton are dictated by the space-time profile of the jet transport coefficient $hat q$ in a dense QCD medium. The spatial gradient of $hat q$ perpendicular to the propagation direction c
The system size dependence of baryon-strangeness (BS) correlations ($C_{BS}$) are investigated with a multiphase transport (AMPT) model for various collision systems from $mathrm{^{10}B+^{10}B}$, $mathrm{^{12}C+^{12}C}$, $mathrm{^{16}O+^{16}O}$, $mat
I look at the renormalization of the medium structure function and a medium induced jet function in a factorized cross section for jet substructure observables in Heavy Ion collisions. This is based on the formalism developed in cite{Vaidya:2020lih},