ﻻ يوجد ملخص باللغة العربية
Multiple stellar populations (MPs) are a distinct characteristic of Globular Clusters (GCs). Their general properties have been widely studied among main sequence, red giant branch (RGB) and horizontal branch (HB) stars, but a common framework is still missing at later evolutionary stages. We studied the MP phenomenon along the AGB sequences in 58 GCs, observed with the Hubble Space Telescope in ultraviolet (UV) and optical filters. By using UV-optical color-magnitude diagrams, we selected the AGB members of each cluster and identified the AGB candidates of the metal-enhanced population in type II GCs. We studied the photometric properties of AGB stars and compared them to theoretical models derived from synthetic spectra analysis. We observe the following features: i) the spread of AGB stars in photometric indices sensitive to variations of light-elements and helium is typically larger than that expected from photometric errors; ii) the fraction of metal-enhanced stars in the AGB is lower than in the RGB in most of the type II GCs; iii) the fraction of 1G stars derived from the chromosome map of AGB stars in 15 GCs is larger than that of RGB stars; v) the AGB/HB frequency correlates with the average mass of the most helium-enriched population. These findings represent a clear evidence of the presence of MPs along the AGB of Galactic GCs and indicate that a significant fraction of helium-enriched stars, which have lower mass in the HB, does not evolve to the AGB phase, leaving the HB sequence towards higher effective temperatures, as predicted by the AGB-manque scenario.
Nearly all Galactic globular clusters host stars that display characteristic abundance anti-correlations, like the O-rich/Na-poor pattern typical of field halo stars, together with O-poor/Na-rich additional components. A recent spectroscopic investig
Galactic globular clusters (GCs) are known to host multiple stellar populations: a first generation with a chemical pattern typical of halo field stars and a second generation (SG) enriched in Na and Al and depleted in O and Mg. Both stellar generati
The location of Galactic Globular Clusters (GC) stars on the horizontal branch (HB) should mainly depend on GC metallicity, the first parameter, but it is actually the result of complex interactions between the red giant branch (RGB) mass loss, the c
The internal dynamics of multiple stellar populations in Globular Clusters (GCs) provides unique constraints on the physical processes responsible for their formation. Specifically, the present-day kinematics of cluster stars, such as rotation and ve
We have calculated synthetic spectra for typical chemical element mixtures (i.e., a standard alpha-enhanced distribution, and distributions displaying CN and ONa anticorrelations) found in the various subpopulations harboured by Galactic globular clu