ﻻ يوجد ملخص باللغة العربية
Nearly all Galactic globular clusters host stars that display characteristic abundance anti-correlations, like the O-rich/Na-poor pattern typical of field halo stars, together with O-poor/Na-rich additional components. A recent spectroscopic investigation questioned the presence of O-poor/Na-rich stars amongst a sample of asymptotic giant branch stars in the cluster M 4, at variance with the spectroscopic detection of a O-poor/Na-rich component along both the cluster red giant branch and horizontal branch. This is contrary to what is expected from the cluster horizontal branch morphology and horizontal branch stellar evolution models. Here we have investigated this issue by employing the CUBI= (U-B)-(B-I) index, that previous studies have demonstrated to be very effective in separating multiple populations along both the red giant and asymptotic giant branch sequences. We confirm previous results that the RGB is intrinsically broad in the V-CUBI diagram, with the presence of two components which nicely correspond to the two populations identified by high-resolution spectroscopy. We find that AGB stars are distributed over a wide range of CUBI values, in close analogy with what is observed for the RGB, demonstrating that the AGB of M4 also hosts multiple stellar populations.
Multiple stellar populations (MPs) are a distinct characteristic of Globular Clusters (GCs). Their general properties have been widely studied among main sequence, red giant branch (RGB) and horizontal branch (HB) stars, but a common framework is sti
The location of Galactic Globular Clusters (GC) stars on the horizontal branch (HB) should mainly depend on GC metallicity, the first parameter, but it is actually the result of complex interactions between the red giant branch (RGB) mass loss, the c
We present chemical abundances for the elements carbon, sodium, and fluorine in 15 red giants of the globular cluster M 4, as well as six red giants of the globular cluster $omega$ Centauri. The chemical abundances were calculated in LTE via spectral
We present a detailed analysis of the radial distribution of light-element multiple populations (LE-MPs) in the massive and dense globular cluster M80 based on the combination of UV and optical Hubble Space Telescope data. Surprisingly, we find that
Multiple populations in globular clusters are usually explained by the formation of stars out of material with a chemical composition that is polluted to different degrees by the ejecta of short-lived, massive stars of various type. Among other thing