ترغب بنشر مسار تعليمي؟ اضغط هنا

Photometric signatures of multiple stellar populations in Galactic globular clusters

184   0   0.0 ( 0 )
 نشر من قبل Luca Sbordone
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have calculated synthetic spectra for typical chemical element mixtures (i.e., a standard alpha-enhanced distribution, and distributions displaying CN and ONa anticorrelations) found in the various subpopulations harboured by Galactic globular clusters. From the spectra we have determined bolometric corrections to the standard Johnson-Cousins and Stroemgren filters, and finally predicted colours. These bolometric corrections and colour-transformations, coupled to our theoretical isochrones with the appropriate chemical composition, provide a complete and self-consistent set of theoretical predictions for the effect of abundance variations on the observed cluster CMD. CNO abundance variations affect mainly wavelengths shorter than 400 nm, due to the arise of molecular absorption bands in cooler atmospheres. As a consequence, colour and magnitude changes are largest in the blue filters, independently of using broad or intermediate bandpasses. Colour-magnitude diagrams involving uvy and UB filters (and their various possible colour combinations) are thus the ones best suited to infer photometrically the presence of multiple stellar generations in individual clusters. They are particularly sensitive to variations in the N abundance, with the largest variations affecting the Red Giant Branch (RGB) and lower Main Sequence (MS). BVI diagrams are expected to display multiple sequences only if the different populations are characterized by variations of the C+N+O sum and helium abundance, that lead to changes in luminosity and effective temperature, but leave the flux distribution above 400 nm practically unaffected. A variation of just the helium abundance, up to the level we investigate here, affects exclusively the interior structure of stars, and is largely irrelevant for the atmospheric structure and the resulting flux distribution in the whole wavelength range spanned by our analysis.



قيم البحث

اقرأ أيضاً

Multiple stellar populations (MPs) are a distinct characteristic of Globular Clusters (GCs). Their general properties have been widely studied among main sequence, red giant branch (RGB) and horizontal branch (HB) stars, but a common framework is sti ll missing at later evolutionary stages. We studied the MP phenomenon along the AGB sequences in 58 GCs, observed with the Hubble Space Telescope in ultraviolet (UV) and optical filters. By using UV-optical color-magnitude diagrams, we selected the AGB members of each cluster and identified the AGB candidates of the metal-enhanced population in type II GCs. We studied the photometric properties of AGB stars and compared them to theoretical models derived from synthetic spectra analysis. We observe the following features: i) the spread of AGB stars in photometric indices sensitive to variations of light-elements and helium is typically larger than that expected from photometric errors; ii) the fraction of metal-enhanced stars in the AGB is lower than in the RGB in most of the type II GCs; iii) the fraction of 1G stars derived from the chromosome map of AGB stars in 15 GCs is larger than that of RGB stars; v) the AGB/HB frequency correlates with the average mass of the most helium-enriched population. These findings represent a clear evidence of the presence of MPs along the AGB of Galactic GCs and indicate that a significant fraction of helium-enriched stars, which have lower mass in the HB, does not evolve to the AGB phase, leaving the HB sequence towards higher effective temperatures, as predicted by the AGB-manque scenario.
We investigate the multiple stellar populations of the globular clusters M3, M5, M13, and M71 using $g^prime$ and intermediate-band CN-$lambda 3883$ photometry obtained with the WIYN 0.9-m telescope on Kitt Peak. We find a strong correlation between red giant stars CN$-g^prime$ colors and their spectroscopic sodium abundances, thus demonstrating the efficacy of the two-filter system for stellar population studies. In all four clusters, the observed spread in red giant branch CN$-g^prime$ colors is wider than that expected from photometric uncertainty, confirming the well-known chemical inhomogeneity of these systems. M3 and M13 show clear evidence for a radial dependence in the CN-band strengths of its red giants, while the evidence for such a radial dependence of CN strengths in M5 is ambiguous. Our data suggest that the dynamically old, relatively metal-rich M71 system is well mixed, as it shows no evidence for chemical segregation. Finally, we measure the radial gradients in the integrated CN$-g^prime$ color of the clusters and find that such gradients are easily detectable in the integrated light. We suggest that photometric observations of color gradients within globular clusters throughout the Local Group can be used to characterize their multiple populations, and thereby constrain the formation history of globular clusters in different galactic environments.
The internal dynamics of multiple stellar populations in Globular Clusters (GCs) provides unique constraints on the physical processes responsible for their formation. Specifically, the present-day kinematics of cluster stars, such as rotation and ve locity dispersion, seems to be related to the initial configuration of the system. In recent work (Milone et al. 2018), we analyzed for the first time the kinematics of the different stellar populations in NGC0104 (47Tucanae) over a large field of view, exploiting the Gaia Data Release 2 proper motions combined with multi-band ground-based photometry. In this paper, based on the work by Cordoni et al. (2019), we extend this analysis to six GCs, namely NGC0288, NGC5904 (M5), NGC6121 (M4), NGC6752, NGC6838 (M71) and further explore NGC0104. Among the analyzed clusters only NGC0104 and NGC5904 show significant rotation on the plane of the sky. Interestingly, multiple stellar populations in NGC5904 exhibit different rotation curves.
We have computed low-mass stellar models and synthetic spectra for an initial chemical composition that includes the full C-N, O-Na, and Mg-Al abundance anticorrelations observed in second generation stars belonging to a number of massive Galactic gl obular clusters. This investigation extends a previous study that has addressed the effect of only the C-N and O-Na anticorrelations, seen in all globulars observed to date. We find that the impact of Mg-Al abundance variations at fixed [Fe/H] and Helium abundance is negligible on stellar models and isochrones (from the main sequence to the tip of the red giant branch) and bolometric corrections, when compared to the effect of C-N and O-Na variations. We identify a spectral feature at 490-520 nm, for low-mass main sequence stars, caused by MgH molecular bands. This feature has a vanishingly small effect on bolometric corrections for Johnson and Stroemgren filters that cover that spectral range. However, specific narrow-band filters able to target this wavelength region can be powerful tools to investigate the Mg-poor unevolved stars and highlight possible splittings of the MS due to variations of Mg abundances.
Evidence that the multiple populations (MPs) are common properties of globular clusters (GCs) is accumulated over the past decades from clusters in the Milky Way and in its satellites. This finding has revived GC research, and suggested that their fo rmation at high redshift must have been a much-more complex phenomenon than imagined before. However, most information on MPs is limited to nearby GCs. The main limitation is that most studies on MPs rely on resolved stars, facing a major challenge to investigate the MP phenomenon in distant galaxies. Here we search for integrated colors of old GCs that are sensitive to the multiple-population phenomenon. To do this, we exploit integrated magnitudes of simulated GCs with MPs, and multi-band Hubble Space Telescope photometry of 56 Galactic GCs, where MPs are widely studied, and characterized as part of the UV Legacy Survey of Galactic GCs. We find that both integrated $C_{rm F275W,F336W,F438W}$ and $m_{rm F275W}-m_{rm F814W}$ colors strongly correlate with the iron abundance of the host GC. In second order, the pseudo two-color diagram built with these integrated colors is sensitive to the MP phenomenon. In particular, once removed the dependence from cluster metallicity, the color residuals depend on the maximum internal helium variation within GCs and on the fraction of second-generation stars. This diagram, which we define here for Galactic GCs, has the potential of detecting and characterizing MPs from integrated photometry of old GCs, thus providing the possibility to extend their investigation outside the Local Group.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا