ﻻ يوجد ملخص باللغة العربية
We introduce a systematic and direct procedure to generate hairy rotating black holes by deforming a spherically symmetric seed solution. We develop our analysis in the context of the gravitational decoupling approach, without resorting to the Newman-Janis algorithm. As examples of possible applications, we investigate how the Kerr black hole solution is modified by a surrounding fluid with conserved energy-momentum tensor. We find non-trivial extensions of the Kerr and Kerr-Newman black holes with primary hair. We prove that a rotating and charged black hole can have the same horizon as Kerrs, Schwarzschilds or Reissner-Nordstroms, thus showing possible observational effects of matter around black holes.
Black holes with hair represented by generic fields surrounding the central source of the vacuum Schwarzschild metric are examined under the minimal set of requirements consisting of i) the existence of a well defined event horizon and ii) the strong
We present an exact solution of Einsteins equation that describes the gravitational shockwave of a massless particle on the horizon of a Kerr-Newman black hole. The backreacted metric is of the generalized Kerr-Schild form and is Type II in the Petro
In the teleparallel equivalent of general relativity the energy density of asymptotically flat gravitational fields can be naturaly defined as a scalar density restricted to a three-dimensional spacelike hypersurface $Sigma$. Integration over the who
Perturbations of Kerr spacetime are typically studied with the Teukolsky formalism, in which a pair of invariant components of the perturbed Weyl tensor are expressed in terms of separable modes that satisfy ordinary differential equations. However,
An exact solution of Einsteins equations which represents a pair of accelerating and rotating black holes (a generalised form of the spinning C-metric) is presented. The starting point is a form of the Plebanski-Demianski metric which, in addition to