ترغب بنشر مسار تعليمي؟ اضغط هنا

Hairy black holes by gravitational decoupling

220   0   0.0 ( 0 )
 نشر من قبل Jorge Ovalle
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Black holes with hair represented by generic fields surrounding the central source of the vacuum Schwarzschild metric are examined under the minimal set of requirements consisting of i) the existence of a well defined event horizon and ii) the strong or dominant energy condition for the hair outside the horizon. We develop our analysis by means of the gravitational decoupling approach. We find that trivial deformations of the seed Schwarzschild vacuum preserve the energy conditions and provide a new mechanism to evade the no-hair theorem based on a primary hair associated with the charge generating these transformations. Under the above conditions i) and ii), this charge consistently increases the entropy from the minimum value given by the Schwarzschild geometry. As a direct application, we find a non-trivial extension of the Reissner-Nordstrom black hole showing a surprisingly simple horizon. Finally, the non-linear electrodynamics generating this new solution is fully specified.



قيم البحث

اقرأ أيضاً

Hairy black holes in the gravitational decoupling setup are studied from the perspective of conformal anomalies. Fluctuations of decoupled sources can be computed by measuring the way the trace anomaly-to-holographic Weyl anomaly ratio differs from u nit. Therefore the gravitational decoupling parameter governing three hairy black hole metrics is then bounded to a range wherein one can reliably emulate AdS/CFT with gravitational decoupled solutions, in the tensor vacuum regime.
160 - Burkhard Kleihaus , 2015
In the presence of a complex scalar field scalar-tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and ordinary hai ry black holes. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.
We consider a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential and an U(1) electromagnetic field. Solving the coupled Einstein-Maxwell-scalar system we find exact hairy charged black hole solutions with the scalar field regular everywhere. We go to the zero temperature limit and we study the effect of the scalar field on the near horizon geometry of an extremal black hole. We find that except a critical value of the charge of the black hole there is also a critical value of the charge of the scalar field beyond of which the extremal black hole is destabilized. We study the thermodynamics of these solutions and we find that if the space is flat then at low temperature the Reissner-Nordstrom black hole is thermodynamically preferred, while if the space is AdS the hairy charged black hole is thermodynamically preferred at low temperature.
211 - A. Ramos , C. Arias , R. Avalos 2021
In a recent paper (Phys. Dark Univ. {bf 31}, 100744 (2021)) it has been obtained new static black hole solutions with primary hairs by the Gravitational Decoupling. In this work we either study the geodesic motion of massive and massless particles ar ound those solutions and restrict the values of the primary hairs by observational data. In particular, we obtain the effective potential, the innermost stable circular orbits, the marginally bounded orbit, and the periastron advance for time--like geodesics. In order to restrict the values taken by the primary hairs we explore their relationship with the rotation parameter of the Kerr black hole giving the same innermost stable circular orbit radius and give the numerical values for the supermassive black holes at Ark 564 and NGC 1365. The photon sphere and the impact parameter associated to null geodesics are also discussed.
We present an exact static black hole solution of Einstein field equations in the framework of Horndeski Theory by imposing spherical symmetry and choosing the coupling constants in the Lagrangian so that the only singularity in the solution is at $r =0$. The analytical extension is built in two particular domains of the parametric space. In the first domain we obtain a solution exhibiting an event horizon analogous to that of the Schwarzschild geometry. For the second domain, we show that the metric displays an exterior event horizon and a Cauchy horizon which encloses a singularity. For both branches we obtain the corresponding Hawking temperature which, when compared to that of the Schwarzschild black hole, acquires a correction proportional to a combination of the coupling constants. Such a correction also modifies the definition of the entropy of the black hole.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا