ترغب بنشر مسار تعليمي؟ اضغط هنا

A Literature Review of Recent Graph Embedding Techniques for Biomedical Data

315   0   0.0 ( 0 )
 نشر من قبل Yankai Chen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

With the rapid development of biomedical software and hardware, a large amount of relational data interlinking genes, proteins, chemical components, drugs, diseases, and symptoms has been collected for modern biomedical research. Many graph-based learning methods have been proposed to analyze such type of data, giving a deeper insight into the topology and knowledge behind the biomedical data, which greatly benefit to both academic research and industrial application for human healthcare. However, the main difficulty is how to handle high dimensionality and sparsity of the biomedical graphs. Recently, graph embedding methods provide an effective and efficient way to address the above issues. It converts graph-based data into a low dimensional vector space where the graph structural properties and knowledge information are well preserved. In this survey, we conduct a literature review of recent developments and trends in applying graph embedding methods for biomedical data. We also introduce important applications and tasks in the biomedical domain as well as associated public biomedical datasets.

قيم البحث

اقرأ أيضاً

Graph is an important data representation which appears in a wide diversity of real-world scenarios. Effective graph analytics provides users a deeper understanding of what is behind the data, and thus can benefit a lot of useful applications such as node classification, node recommendation, link prediction, etc. However, most graph analytics methods suffer the high computation and space cost. Graph embedding is an effective yet efficient way to solve the graph analytics problem. It converts the graph data into a low dimensional space in which the graph structural information and graph properties are maximally preserved. In this survey, we conduct a comprehensive review of the literature in graph embedding. We first introduce the formal definition of graph embedding as well as the related concepts. After that, we propose two taxonomies of graph embedding which correspond to what challenges exist in different graph embedding problem settings and how the existing work address these challenges in their solutions. Finally, we summarize the applications that graph embedding enables and suggest four promising future research directions in terms of computation efficiency, problem settings, techniques and application scenarios.
63 - Sam Vente 2020
Automated negotiation can be an efficient method for resolving conflict and redistributing resources in a coalition setting. Automated negotiation has already seen increased usage in fields such as e-commerce and power distribution in smart girds, an d recent advancements in opponent modelling have proven to deliver better outcomes. However, significant barriers to more widespread adoption remain, such as lack of predictable outcome over time and user trust. Additionally, there have been many recent advancements in the field of reasoning about uncertainty, which could help alleviate both those problems. As there is no recent survey on these two fields, and specifically not on their possible intersection we aim to provide such a survey here.
Biomedical data are widely accepted in developing prediction models for identifying a specific tumor, drug discovery and classification of human cancers. However, previous studies usually focused on different classifiers, and overlook the class imbal ance problem in real-world biomedical datasets. There are a lack of studies on evaluation of data pre-processing techniques, such as resampling and feature selection, on imbalanced biomedical data learning. The relationship between data pre-processing techniques and the data distributions has never been analysed in previous studies. This article mainly focuses on reviewing and evaluating some popular and recently developed resampling and feature selection methods for class imbalance learning. We analyse the effectiveness of each technique from data distribution perspective. Extensive experiments have been done based on five classifiers, four performance measures, eight learning techniques across twenty real-world datasets. Experimental results show that: (1) resampling and feature selection techniques exhibit better performance using support vector machine (SVM) classifier. However, resampling and Feature Selection techniques perform poorly when using C4.5 decision tree and Linear discriminant analysis classifiers; (2) for datasets with different distributions, techniques such as Random undersampling and Feature Selection perform better than other data pre-processing methods with T Location-Scale distribution when using SVM and KNN (K-nearest neighbours) classifiers. Random oversampling outperforms other methods on Negative Binomial distribution using Random Forest classifier with lower level of imbalance ratio; (3) Feature Selection outperforms other data pre-processing methods in most cases, thus, Feature Selection with SVM classifier is the best choice for imbalanced biomedical data learning.
Much of biomedical and healthcare data is encoded in discrete, symbolic form such as text and medical codes. There is a wealth of expert-curated biomedical domain knowledge stored in knowledge bases and ontologies, but the lack of reliable methods fo r learning knowledge representation has limited their usefulness in machine learning applications. While text-based representation learning has significantly improved in recent years through advances in natural language processing, attempts to learn biomedical concept embeddings so far have been lacking. A recent family of models called knowledge graph embeddings have shown promising results on general domain knowledge graphs, and we explore their capabilities in the biomedical domain. We train several state-of-the-art knowledge graph embedding models on the SNOMED-CT knowledge graph, provide a benchmark with comparison to existing methods and in-depth discussion on best practices, and make a case for the importance of leveraging the multi-relational nature of knowledge graphs for learning biomedical knowledge representation. The embeddings, code, and materials will be made available to the communitY.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا