ﻻ يوجد ملخص باللغة العربية
Biomedical data are widely accepted in developing prediction models for identifying a specific tumor, drug discovery and classification of human cancers. However, previous studies usually focused on different classifiers, and overlook the class imbalance problem in real-world biomedical datasets. There are a lack of studies on evaluation of data pre-processing techniques, such as resampling and feature selection, on imbalanced biomedical data learning. The relationship between data pre-processing techniques and the data distributions has never been analysed in previous studies. This article mainly focuses on reviewing and evaluating some popular and recently developed resampling and feature selection methods for class imbalance learning. We analyse the effectiveness of each technique from data distribution perspective. Extensive experiments have been done based on five classifiers, four performance measures, eight learning techniques across twenty real-world datasets. Experimental results show that: (1) resampling and feature selection techniques exhibit better performance using support vector machine (SVM) classifier. However, resampling and Feature Selection techniques perform poorly when using C4.5 decision tree and Linear discriminant analysis classifiers; (2) for datasets with different distributions, techniques such as Random undersampling and Feature Selection perform better than other data pre-processing methods with T Location-Scale distribution when using SVM and KNN (K-nearest neighbours) classifiers. Random oversampling outperforms other methods on Negative Binomial distribution using Random Forest classifier with lower level of imbalance ratio; (3) Feature Selection outperforms other data pre-processing methods in most cases, thus, Feature Selection with SVM classifier is the best choice for imbalanced biomedical data learning.
Objective: This study illustrates the ambiguity of ROC in evaluating two classifiers of 90-day LVAD mortality. This paper also introduces the precision recall curve (PRC) as a supplemental metric that is more representative of LVAD classifiers perfor
A major obstacle to the development of Natural Language Processing (NLP) methods in the biomedical domain is data accessibility. This problem can be addressed by generating medical data artificially. Most previous studies have focused on the generati
There have been more than 850,000 confirmed cases and over 48,000 deaths from the human coronavirus disease 2019 (COVID-19) pandemic, caused by novel severe acute respiratory syndrome coronavirus (SARS-CoV-2), in the United States alone. However, the
Pedestrian attribute recognition is an important multi-label classification problem. Although the convolutional neural networks are prominent in learning discriminative features from images, the data imbalance in multi-label setting for fine-grained
With the rapid development of biomedical software and hardware, a large amount of relational data interlinking genes, proteins, chemical components, drugs, diseases, and symptoms has been collected for modern biomedical research. Many graph-based lea