ﻻ يوجد ملخص باللغة العربية
We provide evidence that commonly held intuitions when designing quantum circuits can be misleading. In particular we show that: a) reducing the T-count can increase the total depth; b) it may be beneficial to trade CNOTs for measurements in NISQ circuits; c) measurement-based uncomputation of relative phase Toffoli ancillae can make up to 30% of a circuits depth; d) area and volume cost metrics can misreport the resource analysis. Our findings assume that qubits are and will remain a very scarce resource. The results are applicable for both NISQ and QECC protected circuits. Our method uses multiple ways of decomposing Toffoli gates into Clifford+T gates. We illustrate our method on addition and multiplication circuits using ripple-carry. As a byproduct result we show systematically that for a practically significant range of circuit widths, ripple-carry addition circuits are more resource efficient than the carry-lookahead addition ones. The methods and circuits were implemented in the open-source QUANTIFY software.
We present some basic integer arithmetic quantum circuits, such as adders and multipliers-accumulators of various forms, as well as diagonal operators, which operate on multilevel qudits. The integers to be processed are represented in an alternative
Quantum resource analysis is crucial for designing quantum circuits as well as assessing the viability of arbitrary (error-corrected) quantum computations. To this end, we introduce QUANTIFY, which is an open-source framework for the quantitative ana
Most research in quantum computing today is performed against simulations of quantum computers rather than true quantum computers. Simulating a quantum computer entails implementing all of the unitary operators corresponding to the quantum gates as t
Quantum computation is traditionally expressed in terms of quantum bits, or qubits. In this work, we instead consider three-level qu$trits$. Past work with qutrits has demonstrated only constant factor improvements, owing to the $log_2(3)$ binary-to-
We generalize quantum circuits for the Toffoli gate presented by Selinger and Jones for functionally controlled NOT gates, i.e., $X$ gates controlled by arbitrary $n$-variable Boolean functions. Our constructions target the gate set consisting of Cli