ﻻ يوجد ملخص باللغة العربية
We generalize quantum circuits for the Toffoli gate presented by Selinger and Jones for functionally controlled NOT gates, i.e., $X$ gates controlled by arbitrary $n$-variable Boolean functions. Our constructions target the gate set consisting of Clifford gates and single qubit rotations by arbitrary angles. Our constructions use the Walsh-Hadamard spectrum of Boolean functions and build on the work by Schuch and Siewert and Welch et al. We present quantum circuits for the case where the target qubit is in an arbitrary state as well as the special case where the target is in a known state. Additionally, we present constructions that require no auxiliary qubits and constructions that have a rotation depth of 1.
We present a theoretical analysis of the selective darkening method for implementing quantum controlled-NOT (CNOT) gates. This method, which we recently proposed and demonstrated, consists of driving two transversely-coupled quantum bits (qubits) wit
We extend the circuit model of quantum comuptation so that the wiring between gates is soft-coded within registers inside the gates. The addresses in these registers can be manipulated and put into superpositions. This aims at capturing indefinite ca
We present improved quantum circuits for elliptic curve scalar multiplication, the most costly component in Shors algorithm to compute discrete logarithms in elliptic curve groups. We optimize low-level components such as reversible integer and modul
Most research in quantum computing today is performed against simulations of quantum computers rather than true quantum computers. Simulating a quantum computer entails implementing all of the unitary operators corresponding to the quantum gates as t
We present some basic integer arithmetic quantum circuits, such as adders and multipliers-accumulators of various forms, as well as diagonal operators, which operate on multilevel qudits. The integers to be processed are represented in an alternative