ترغب بنشر مسار تعليمي؟ اضغط هنا

Arithmetic Circuits for Multilevel Qudits Based on Quantum Fourier Transform

139   0   0.0 ( 0 )
 نشر من قبل Archimedes Pavlidis D
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

We present some basic integer arithmetic quantum circuits, such as adders and multipliers-accumulators of various forms, as well as diagonal operators, which operate on multilevel qudits. The integers to be processed are represented in an alternative basis after they have been Fourier transformed. Several arithmetic circuits operating on Fourier transformed integers have appeared in the literature for two level qubits. Here we extend these techniques on multilevel qudits, as they may offer some advantages relative to qubits implementations. The arithmetic circuits presented can be used as basic building blocks for higher level algorithms such as quantum phase estimation, quantum simulation, quantum optimization etc., but they can also be used in the implementation of a quantum fractional Fourier transform as it is shown in a companion work presented separately.



قيم البحث

اقرأ أيضاً

We provide evidence that commonly held intuitions when designing quantum circuits can be misleading. In particular we show that: a) reducing the T-count can increase the total depth; b) it may be beneficial to trade CNOTs for measurements in NISQ cir cuits; c) measurement-based uncomputation of relative phase Toffoli ancillae can make up to 30% of a circuits depth; d) area and volume cost metrics can misreport the resource analysis. Our findings assume that qubits are and will remain a very scarce resource. The results are applicable for both NISQ and QECC protected circuits. Our method uses multiple ways of decomposing Toffoli gates into Clifford+T gates. We illustrate our method on addition and multiplication circuits using ripple-carry. As a byproduct result we show systematically that for a practically significant range of circuit widths, ripple-carry addition circuits are more resource efficient than the carry-lookahead addition ones. The methods and circuits were implemented in the open-source QUANTIFY software.
146 - Maksim Levental 2021
Most research in quantum computing today is performed against simulations of quantum computers rather than true quantum computers. Simulating a quantum computer entails implementing all of the unitary operators corresponding to the quantum gates as t ensors. For high numbers of qubits, performing tensor multiplications for these simulations becomes quite expensive, since $N$-qubit gates correspond to $2^{N}$-dimensional tensors. One way to accelerate such a simulation is to use field programmable gate array (FPGA) hardware to efficiently compute the matrix multiplications. Though FPGAs can efficiently perform tensor multiplications, they are memory bound, having relatively small block random access memory. One way to potentially reduce the memory footprint of a quantum computing system is to represent it as a tensor network; tensor networks are a formalism for representing compositions of tensors wherein economical tensor contractions are readily identified. Thus we explore tensor networks as a means to reducing the memory footprint of quantum computing systems and broadly accelerating simulations of such systems.
Quantum Fourier transforms (QFT) have gained increased attention with the rise of quantum walks, boson sampling, and quantum metrology. Here we present and demonstrate a general technique that simplifies the construction of QFT interferometers using both path and polarization modes. On that basis, we first observed the generalized Hong-Ou-Mandel effect with up to four photons. Furthermore, we directly exploited number-path entanglement generated in these QFT interferometers and demonstrated optical phase supersensitivities deterministically.
The Quantum Fourier Transformation ($QFT$) is a key building block for a whole wealth of quantum algorithms. Despite its proven efficiency, only a few proof-of-principle demonstrations have been reported. Here we utilize $QFT$ to enhance the perf ormance of a quantum sensor. We implement the $QFT$ algorithm in a hybrid quantum register consisting of a nitrogen-vacancy (NV) center electron spin and three nuclear spins. The $QFT$ runs on the nuclear spins and serves to process the sensor - NV electron spin signal. We demonstrate $QFT$ for quantum (spins) and classical signals (radio frequency (RF) ) with near Heisenberg limited precision scaling. We further show the application of $QFT$ for demultiplexing the nuclear magnetic resonance (NMR) signal of two distinct target nuclear spins. Our results mark the application of a complex quantum algorithm in sensing which is of particular interest for high dynamic range quantum sensing and nanoscale NMR spectroscopy experiments.
Many quantum algorithms make use of ancilla, additional qubits used to store temporary information during computation, to reduce the total execution time. Quantum computers will be resource-constrained for years to come so reducing ancilla requiremen ts is crucial. In this work, we give a method to generate ancilla out of idle qubits by placing some in higher-value states, called qudits. We show how to take a circuit with many $O(n)$ ancilla and design an ancilla-free circuit with the same asymptotic depth. Using this, we give a circuit construction for an in-place adder and a constant adder both with $O(log n)$ depth using temporary qudits and no ancilla.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا