ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolving Reinforcement Learning Algorithms

87   0   0.0 ( 0 )
 نشر من قبل John Co-Reyes
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a method for meta-learning reinforcement learning algorithms by searching over the space of computational graphs which compute the loss function for a value-based model-free RL agent to optimize. The learned algorithms are domain-agnostic and can generalize to new environments not seen during training. Our method can both learn from scratch and bootstrap off known existing algorithms, like DQN, enabling interpretable modifications which improve performance. Learning from scratch on simple classical control and gridworld tasks, our method rediscovers the temporal-difference (TD) algorithm. Bootstrapped from DQN, we highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games. The analysis of the learned algorithm behavior shows resemblance to recently proposed RL algorithms that address overestimation in value-based methods.

قيم البحث

اقرأ أيضاً

In recent years, Multifactorial Optimization (MFO) has gained a notable momentum in the research community. MFO is known for its inherent capability to efficiently address multiple optimization tasks at the same time, while transferring information a mong such tasks to improve their convergence speed. On the other hand, the quantum leap made by Deep Q Learning (DQL) in the Machine Learning field has allowed facing Reinforcement Learning (RL) problems of unprecedented complexity. Unfortunately, complex DQL models usually find it difficult to converge to optimal policies due to the lack of exploration or sparse rewards. In order to overcome these drawbacks, pre-trained models are widely harnessed via Transfer Learning, extrapolating knowledge acquired in a source task to the target task. Besides, meta-heuristic optimization has been shown to reduce the lack of exploration of DQL models. This work proposes a MFO framework capable of simultaneously evolving several DQL models towards solving interrelated RL tasks. Specifically, our proposed framework blends together the benefits of meta-heuristic optimization, Transfer Learning and DQL to automate the process of knowledge transfer and policy learning of distributed RL agents. A thorough experimentation is presented and discussed so as to assess the performance of the framework, its comparison to the traditional methodology for Transfer Learning in terms of convergence, speed and policy quality , and the intertask relationships found and exploited over the search process.
Reinforcement learning (RL) algorithms update an agents parameters according to one of several possible rules, discovered manually through years of research. Automating the discovery of update rules from data could lead to more efficient algorithms, or algorithms that are better adapted to specific environments. Although there have been prior attempts at addressing this significant scientific challenge, it remains an open question whether it is feasible to discover alternatives to fundamental concepts of RL such as value functions and temporal-difference learning. This paper introduces a new meta-learning approach that discovers an entire update rule which includes both what to predict (e.g. value functions) and how to learn from it (e.g. bootstrapping) by interacting with a set of environments. The output of this method is an RL algorithm that we call Learned Policy Gradient (LPG). Empirical results show that our method discovers its own alternative to the concept of value functions. Furthermore it discovers a bootstrapping mechanism to maintain and use its predictions. Surprisingly, when trained solely on toy environments, LPG generalises effectively to complex Atari games and achieves non-trivial performance. This shows the potential to discover general RL algorithms from data.
Learning interpretable and transferable subpolicies and performing task decomposition from a single, complex task is difficult. Some traditional hierarchical reinforcement learning techniques enforce this decomposition in a top-down manner, while met a-learning techniques require a task distribution at hand to learn such decompositions. This paper presents a framework for using diverse suboptimal world models to decompose complex task solutions into simpler modular subpolicies. This framework performs automatic decomposition of a single source task in a bottom up manner, concurrently learning the required modular subpolicies as well as a controller to coordinate them. We perform a series of experiments on high dimensional continuous action control tasks to demonstrate the effectiveness of this approach at both complex single task learning and lifelong learning. Finally, we perform ablation studies to understand the importance and robustness of different elements in the framework and limitations to this approach.
Through many recent successes in simulation, model-free reinforcement learning has emerged as a promising approach to solving continuous control robotic tasks. The research community is now able to reproduce, analyze and build quickly on these result s due to open source implementations of learning algorithms and simulated benchmark tasks. To carry forward these successes to real-world applications, it is crucial to withhold utilizing the unique advantages of simulations that do not transfer to the real world and experiment directly with physical robots. However, reinforcement learning research with physical robots faces substantial resistance due to the lack of benchmark tasks and supporting source code. In this work, we introduce several reinforcement learning tasks with multiple commercially available robots that present varying levels of learning difficulty, setup, and repeatability. On these tasks, we test the learning performance of off-the-shelf implementations of four reinforcement learning algorithms and analyze sensitivity to their hyper-parameters to determine their readiness for applications in various real-world tasks. Our results show that with a careful setup of the task interface and computations, some of these implementations can be readily applicable to physical robots. We find that state-of-the-art learning algorithms are highly sensitive to their hyper-parameters and their relative ordering does not transfer across tasks, indicating the necessity of re-tuning them for each task for best performance. On the other hand, the best hyper-parameter configuration from one task may often result in effective learning on held-out tasks even with different robots, providing a reasonable default. We make the benchmark tasks publicly available to enhance reproducibility in real-world reinforcement learning.
Hierarchical reinforcement learning is a promising approach to tackle long-horizon decision-making problems with sparse rewards. Unfortunately, most methods still decouple the lower-level skill acquisition process and the training of a higher level t hat controls the skills in a new task. Leaving the skills fixed can lead to significant sub-optimality in the transfer setting. In this work, we propose a novel algorithm to discover a set of skills, and continuously adapt them along with the higher level even when training on a new task. Our main contributions are two-fold. First, we derive a new hierarchical policy gradient with an unbiased latent-dependent baseline, and we introduce Hierarchical Proximal Policy Optimization (HiPPO), an on-policy method to efficiently train all levels of the hierarchy jointly. Second, we propose a method for training time-abstractions that improves the robustness of the obtained skills to environment changes. Code and results are available at sites.google.com/view/hippo-rl

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا