ترغب بنشر مسار تعليمي؟ اضغط هنا

Simultaneously Evolving Deep Reinforcement Learning Models using Multifactorial Optimization

168   0   0.0 ( 0 )
 نشر من قبل Aritz D. Martinez
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent years, Multifactorial Optimization (MFO) has gained a notable momentum in the research community. MFO is known for its inherent capability to efficiently address multiple optimization tasks at the same time, while transferring information among such tasks to improve their convergence speed. On the other hand, the quantum leap made by Deep Q Learning (DQL) in the Machine Learning field has allowed facing Reinforcement Learning (RL) problems of unprecedented complexity. Unfortunately, complex DQL models usually find it difficult to converge to optimal policies due to the lack of exploration or sparse rewards. In order to overcome these drawbacks, pre-trained models are widely harnessed via Transfer Learning, extrapolating knowledge acquired in a source task to the target task. Besides, meta-heuristic optimization has been shown to reduce the lack of exploration of DQL models. This work proposes a MFO framework capable of simultaneously evolving several DQL models towards solving interrelated RL tasks. Specifically, our proposed framework blends together the benefits of meta-heuristic optimization, Transfer Learning and DQL to automate the process of knowledge transfer and policy learning of distributed RL agents. A thorough experimentation is presented and discussed so as to assess the performance of the framework, its comparison to the traditional methodology for Transfer Learning in terms of convergence, speed and policy quality , and the intertask relationships found and exploited over the search process.

قيم البحث

اقرأ أيضاً

We propose a method for meta-learning reinforcement learning algorithms by searching over the space of computational graphs which compute the loss function for a value-based model-free RL agent to optimize. The learned algorithms are domain-agnostic and can generalize to new environments not seen during training. Our method can both learn from scratch and bootstrap off known existing algorithms, like DQN, enabling interpretable modifications which improve performance. Learning from scratch on simple classical control and gridworld tasks, our method rediscovers the temporal-difference (TD) algorithm. Bootstrapped from DQN, we highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games. The analysis of the learned algorithm behavior shows resemblance to recently proposed RL algorithms that address overestimation in value-based methods.
Unprecedented high volumes of data are becoming available with the growth of the advanced metering infrastructure. These are expected to benefit planning and operation of the future power system, and to help the customers transition from a passive to an active role. In this paper, we explore for the first time in the smart grid context the benefits of using Deep Reinforcement Learning, a hybrid type of methods that combines Reinforcement Learning with Deep Learning, to perform on-line optimization of schedules for building energy management systems. The learning procedure was explored using two methods, Deep Q-learning and Deep Policy Gradient, both of them being extended to perform multiple actions simultaneously. The proposed approach was validated on the large-scale Pecan Street Inc. database. This highly-dimensional database includes information about photovoltaic power generation, electric vehicles as well as buildings appliances. Moreover, these on-line energy scheduling strategies could be used to provide real-time feedback to consumers to encourage more efficient use of electricity.
113 - Fei Ye , Xuxin Cheng , Pin Wang 2020
Lane-change maneuvers are commonly executed by drivers to follow a certain routing plan, overtake a slower vehicle, adapt to a merging lane ahead, etc. However, improper lane change behaviors can be a major cause of traffic flow disruptions and even crashes. While many rule-based methods have been proposed to solve lane change problems for autonomous driving, they tend to exhibit limited performance due to the uncertainty and complexity of the driving environment. Machine learning-based methods offer an alternative approach, as Deep reinforcement learning (DRL) has shown promising success in many application domains including robotic manipulation, navigation, and playing video games. However, applying DRL to autonomous driving still faces many practical challenges in terms of slow learning rates, sample inefficiency, and safety concerns. In this study, we propose an automated lane change strategy using proximal policy optimization-based deep reinforcement learning, which shows great advantages in learning efficiency while still maintaining stable performance. The trained agent is able to learn a smooth, safe, and efficient driving policy to make lane-change decisions (i.e. when and how) in a challenging situation such as dense traffic scenarios. The effectiveness of the proposed policy is validated by using metrics of task success rate and collision rate. The simulation results demonstrate the lane change maneuvers can be efficiently learned and executed in a safe, smooth, and efficient manner.
Model-based Reinforcement Learning (MBRL) is a promising framework for learning control in a data-efficient manner. MBRL algorithms can be fairly complex due to the separate dynamics modeling and the subsequent planning algorithm, and as a result, th ey often possess tens of hyperparameters and architectural choices. For this reason, MBRL typically requires significant human expertise before it can be applied to new problems and domains. To alleviate this problem, we propose to use automatic hyperparameter optimization (HPO). We demonstrate that this problem can be tackled effectively with automated HPO, which we demonstrate to yield significantly improved performance compared to human experts. In addition, we show that tuning of several MBRL hyperparameters dynamically, i.e. during the training itself, further improves the performance compared to using static hyperparameters which are kept fixed for the whole training. Finally, our experiments provide valuable insights into the effects of several hyperparameters, such as plan horizon or learning rate and their influence on the stability of training and resulting rewards.
The real-time strategy game of StarCraft II has been posed as a challenge for reinforcement learning by Googles DeepMind. This study examines the use of an agent based on the Monte-Carlo Tree Search algorithm for optimizing the build order in StarCra ft II, and discusses how its performance can be improved even further by combining it with a deep reinforcement learning neural network. The experimental results accomplished using Monte-Carlo Tree Search achieves a score similar to a novice human player by only using very limited time and computational resources, which paves the way to achieving scores comparable to those of a human expert by combining it with the use of deep reinforcement learning.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا