ﻻ يوجد ملخص باللغة العربية
We define an attractive gravity probe surface (AGPS) as a compact 2-surface $S_alpha$ with positive mean curvature $k$ satisfying $r^a D_a k / k^2 ge alpha$ (for a constant $alpha>-1/2$) in the local inverse mean curvature flow, where $r^a D_a k$ is the derivative of $k$ in the outward unit normal direction. For asymptotically flat spaces, any AGPS is proved to satisfy the areal inequality $A_alpha le 4pi [ ( 3+4alpha)/(1+2alpha) ]^2(Gm)^2$, where $A_{alpha}$ is the area of $S_alpha$ and $m$ is the Arnowitt-Deser-Misner (ADM) mass. Equality is realized when the space is isometric to the $t=$constant hypersurface of the Schwarzschild spacetime and $S_alpha$ is an $r=mathrm{constant}$ surface with $r^a D_a k / k^2 = alpha$. We adapt the two methods of the inverse mean curvature flow and the conformal flow. Therefore, our result is applicable to the case where $S_alpha$ has multiple components. For anti-de Sitter (AdS) spaces, a similar inequality is derived, but the proof is performed only by using the inverse mean curvature flow. We also discuss the cases with asymptotically locally AdS spaces.
We study the polarizations of gravitational waves (GWs) in two classes of extended gravity theories. First, we formulate the polarizations in linear massive gravity (MG) with generic mass terms of non-Fierz-Pauli type by identifying all the independe
We propose a new concept, the transversely trapping surface (TTS), as an extension of the static photon surface characterizing the strong gravity region of a static/stationary spacetime in terms of photon behavior. The TTS is defined as a static/stat
We study the gravitational radiation emitted during the scattering of two spinless bodies in the post-Minkowskian Effective Field Theory approach. We derive the conserved stress-energy tensor linearly coupled to gravity and the classical probability
In this paper we analyze the gravitational field of a global monopole in the context of $f(R)$ gravity. More precisely, we show that the field equations obtained are expressed in terms of $F(R)=frac{df(R)}{dR}$. Since we are dealing with a sphericall
The main aim of this paper is twofold. (1) Exact solutions of a scalar field in the Schwarzschild spacetime are presented. The exact wave functions of scattering states and bound-states are presented. Besides the exact solution, we also provide expli