ﻻ يوجد ملخص باللغة العربية
We propose a new concept, the transversely trapping surface (TTS), as an extension of the static photon surface characterizing the strong gravity region of a static/stationary spacetime in terms of photon behavior. The TTS is defined as a static/stationary timelike surface $S$ whose spatial section is a closed two-surface, such that arbitrary photons emitted tangentially to $S$ from arbitrary points on $S$ propagate on or toward the inside of $S$. We study the properties of TTSs for static spacetimes and axisymmetric stationary spacetimes. In particular, the area $A_0$ of a TTS is proved to be bounded as $A_0le 4pi(3GM)^2$ under certain conditions, where $G$ is the Newton constant and $M$ is the total mass. The connection between the TTS and the loosely trapped surface proposed by us [arXiv:1701.00564] is also examined.
It is shown that the free motion of massive particles moving in static spacetimes are given by the geodesics of an energy-dependent Riemannian metric on the spatial sections analogous to Jacobis metric in classical dynamics. In the massless limit Jac
We consider here the existence and structure of trapped surfaces, horizons and singularities in spherically symmetric static massless scalar field spacetimes. Earlier studies have shown that there exists no event horizon in such spacetimes if the sca
In 1981 Wyman classified the solutions of the Einstein--Klein--Gordon equations with static spherically symmetric spacetime metric and vanishing scalar potential. For one of these classes, the scalar field linearly grows with time. We generalize this
Weakly nonlinear dynamics in anti-de Sitter (AdS) spacetimes is reviewed, keeping an eye on the AdS instability conjecture and focusing on the resonant approximation that accurately captures in a simplified form the long-term evolution of small initi
The Riemann Hypothesis states that the Riemann zeta function $zeta(z)$ admits a set of non-trivial zeros that are complex numbers supposed to have real part $1/2$. Their distribution on the complex plane is thought to be the key to determine the numb