ﻻ يوجد ملخص باللغة العربية
We study the gravitational radiation emitted during the scattering of two spinless bodies in the post-Minkowskian Effective Field Theory approach. We derive the conserved stress-energy tensor linearly coupled to gravity and the classical probability amplitude of graviton emission at leading and next-to-leading order in the Newtons constant $G$. The amplitude can be expressed in compact form as one-dimensional integrals over a Feynman parameter involving Bessel functions. We use it to recover the leading-order radiated angular momentum expression. Upon expanding it in the relative velocity between the two bodies $v$, we compute the total four-momentum radiated into gravitational waves at leading-order in $G$ and up to an order $v^8$, finding agreement with what was recently computed using scattering amplitude methods. Our results also allow us to investigate the zero frequency limit of the emitted energy spectrum.
Using the recently established formalism of a worldline quantum field theory (WQFT) description of the classical scattering of two spinless black holes, we compute the far-field time-domain waveform of the gravitational waves produced in the encounte
Effective field theories describing gravity coupled to matter are investigated, allowing for operators of arbitrary mass dimension. Terms violating local Lorentz and diffeomorphism invariance while preserving internal gauge symmetries are included. T
Advanced methods for computing perturbative, quantum-gravitational scattering amplitudes show great promise for improving our knowledge of classical gravitational dynamics. This is especially true in the weak-field and arbitrary-speed (post-Minkowski
We develop an Effective Field Theory (EFT) formalism to solve for the conservative dynamics of binary systems in gravity via Post-Minkowskian (PM) scattering data. Our framework combines a systematic EFT approach to compute the deflection angle in th
Theories of scalars and gravity, with non-minimal interactions, $sim (M_P^2 +F(phi) )R +L(phi)$, have graviton exchange induced contact terms. These terms arise in single particle reducible diagrams with vertices $propto q^2$ that cancel the Feynman